|
|
|
import os |
|
import numpy as np |
|
import warnings |
|
|
|
try: |
|
import mmcv |
|
except ImportError: |
|
warnings.warn( |
|
"The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'" |
|
) |
|
|
|
try: |
|
from mmpose.apis import inference_topdown |
|
from mmpose.apis import init_model as init_pose_estimator |
|
from mmpose.evaluation.functional import nms |
|
from mmpose.utils import adapt_mmdet_pipeline |
|
from mmpose.structures import merge_data_samples |
|
except ImportError: |
|
warnings.warn( |
|
"The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'" |
|
) |
|
|
|
try: |
|
from mmdet.apis import inference_detector, init_detector |
|
except ImportError: |
|
warnings.warn( |
|
"The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'" |
|
) |
|
|
|
|
|
class Wholebody: |
|
def __init__(self, |
|
det_config=None, det_ckpt=None, |
|
pose_config=None, pose_ckpt=None, |
|
device="cpu"): |
|
|
|
if det_config is None: |
|
det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py") |
|
|
|
if pose_config is None: |
|
pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py") |
|
|
|
if det_ckpt is None: |
|
det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' |
|
|
|
if pose_ckpt is None: |
|
pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth" |
|
|
|
|
|
self.detector = init_detector(det_config, det_ckpt, device=device) |
|
self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg) |
|
|
|
|
|
self.pose_estimator = init_pose_estimator( |
|
pose_config, |
|
pose_ckpt, |
|
device=device) |
|
|
|
def to(self, device): |
|
self.detector.to(device) |
|
self.pose_estimator.to(device) |
|
return self |
|
|
|
def __call__(self, oriImg): |
|
|
|
det_result = inference_detector(self.detector, oriImg) |
|
pred_instance = det_result.pred_instances.cpu().numpy() |
|
bboxes = np.concatenate( |
|
(pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) |
|
bboxes = bboxes[np.logical_and(pred_instance.labels == 0, |
|
pred_instance.scores > 0.5)] |
|
|
|
|
|
bboxes = bboxes[nms(bboxes, 0.7), :4] |
|
|
|
|
|
if len(bboxes) == 0: |
|
pose_results = inference_topdown(self.pose_estimator, oriImg) |
|
else: |
|
pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes) |
|
preds = merge_data_samples(pose_results) |
|
preds = preds.pred_instances |
|
|
|
|
|
keypoints = preds.get('transformed_keypoints', |
|
preds.keypoints) |
|
if 'keypoint_scores' in preds: |
|
scores = preds.keypoint_scores |
|
else: |
|
scores = np.ones(keypoints.shape[:-1]) |
|
|
|
if 'keypoints_visible' in preds: |
|
visible = preds.keypoints_visible |
|
else: |
|
visible = np.ones(keypoints.shape[:-1]) |
|
keypoints_info = np.concatenate( |
|
(keypoints, scores[..., None], visible[..., None]), |
|
axis=-1) |
|
|
|
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) |
|
|
|
neck[:, 2:4] = np.logical_and( |
|
keypoints_info[:, 5, 2:4] > 0.3, |
|
keypoints_info[:, 6, 2:4] > 0.3).astype(int) |
|
new_keypoints_info = np.insert( |
|
keypoints_info, 17, neck, axis=1) |
|
mmpose_idx = [ |
|
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 |
|
] |
|
openpose_idx = [ |
|
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 |
|
] |
|
new_keypoints_info[:, openpose_idx] = \ |
|
new_keypoints_info[:, mmpose_idx] |
|
keypoints_info = new_keypoints_info |
|
|
|
keypoints, scores, visible = keypoints_info[ |
|
..., :2], keypoints_info[..., 2], keypoints_info[..., 3] |
|
|
|
return keypoints, scores |
|
|