import math import numpy as np import cv2 eps = 0.01 def smart_width(d): if d<5: return 1 elif d<10: return 2 elif d<20: return 3 elif d<40: return 4 elif d<80: return 5 elif d<160: return 6 elif d<320: return 7 else: return 8 def draw_bodypose(canvas, candidate, subset): H, W, C = canvas.shape candidate = np.array(candidate) subset = np.array(subset) limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] if -1 in index: continue Y = candidate[index.astype(int), 0] * float(W) X = candidate[index.astype(int), 1] * float(H) mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) width = smart_width(length) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), width), int(angle), 0, 360, 1) cv2.fillConvexPoly(canvas, polygon, colors[i]) canvas = (canvas * 0.6).astype(np.uint8) for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] x = int(x * W) y = int(y * H) radius = 4 cv2.circle(canvas, (int(x), int(y)), radius, colors[i], thickness=-1) return canvas def draw_handpose(canvas, all_hand_peaks): import matplotlib H, W, C = canvas.shape edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] # (person_number*2, 21, 2) for i in range(len(all_hand_peaks)): peaks = all_hand_peaks[i] peaks = np.array(peaks) for ie, e in enumerate(edges): x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] x1 = int(x1 * W) y1 = int(y1 * H) x2 = int(x2 * W) y2 = int(y2 * H) if x1 > eps and y1 > eps and x2 > eps and y2 > eps: length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 width = smart_width(length) cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=width) for _, keyponit in enumerate(peaks): x, y = keyponit x = int(x * W) y = int(y * H) if x > eps and y > eps: radius = 3 cv2.circle(canvas, (x, y), radius, (0, 0, 255), thickness=-1) return canvas def draw_facepose(canvas, all_lmks): H, W, C = canvas.shape for lmks in all_lmks: lmks = np.array(lmks) for lmk in lmks: x, y = lmk x = int(x * W) y = int(y * H) if x > eps and y > eps: radius = 3 cv2.circle(canvas, (x, y), radius, (255, 255, 255), thickness=-1) return canvas # Calculate the resolution def size_calculate(h, w, resolution): H = float(h) W = float(w) # resize the short edge to the resolution k = float(resolution) / min(H, W) # short edge H *= k W *= k # resize to the nearest integer multiple of 64 H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 return H, W def warpAffine_kps(kps, M): a = M[:,:2] t = M[:,2] kps = np.dot(kps, a.T) + t return kps