Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,490 Bytes
02f6d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
# Adapted from Marigold: https://github.com/prs-eth/Marigold and diffusers
import inspect
from typing import Union, Optional, List
import torch
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
import PIL
from PIL import Image
from diffusers import (
DiffusionPipeline,
EulerDiscreteScheduler,
UNetSpatioTemporalConditionModel,
AutoencoderKLTemporalDecoder,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
from transformers import (
CLIPVisionModelWithProjection,
CLIPImageProcessor,
)
from einops import rearrange, repeat
class ChronoDepthOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
depth_np: np.ndarray
depth_colored: Union[List[PIL.Image.Image], np.ndarray]
class ChronoDepthPipeline(DiffusionPipeline):
model_cpu_offload_seq = "image_encoder->unet->vae"
_callback_tensor_inputs = ["latents"]
rgb_latent_scale_factor = 0.18215
depth_latent_scale_factor = 0.18215
def __init__(
self,
vae: AutoencoderKLTemporalDecoder,
image_encoder: CLIPVisionModelWithProjection,
unet: UNetSpatioTemporalConditionModel,
scheduler: EulerDiscreteScheduler,
feature_extractor: CLIPImageProcessor,
):
super().__init__()
self.register_modules(
vae=vae,
image_encoder=image_encoder,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
if not hasattr(self, "dtype"):
self.dtype = self.unet.dtype
def encode_RGB(self,
image: torch.Tensor,
):
video_length = image.shape[1]
image = rearrange(image, "b f c h w -> (b f) c h w")
latents = self.vae.encode(image).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
latents = latents * self.vae.config.scaling_factor
return latents
def _encode_image(self, image, device, discard=True):
'''
set image to zero tensor discards the image embeddings if discard is True
'''
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image)
if discard:
image = np.zeros_like(image)
image = self.image_processor.numpy_to_pt(image)
# We normalize the image before resizing to match with the original implementation.
# Then we unnormalize it after resizing.
image = image * 2.0 - 1.0
image = _resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
# Normalize the image with for CLIP input
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
return image_embeddings
def decode_depth(self, depth_latent: torch.Tensor, decode_chunk_size=5) -> torch.Tensor:
num_frames = depth_latent.shape[1]
depth_latent = rearrange(depth_latent, "b f c h w -> (b f) c h w")
depth_latent = depth_latent / self.vae.config.scaling_factor
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
depth_frames = []
for i in range(0, depth_latent.shape[0], decode_chunk_size):
num_frames_in = depth_latent[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
depth_frame = self.vae.decode(depth_latent[i : i + decode_chunk_size], **decode_kwargs).sample
depth_frames.append(depth_frame)
depth_frames = torch.cat(depth_frames, dim=0)
depth_frames = depth_frames.reshape(-1, num_frames, *depth_frames.shape[1:])
depth_mean = depth_frames.mean(dim=2, keepdim=True)
return depth_mean
def _get_add_time_ids(self,
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
):
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = self.unet.config.addition_time_embed_dim * \
len(add_time_ids)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size, 1)
return add_time_ids
def decode_latents(self, latents, num_frames, decode_chunk_size=14):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
latents = latents.flatten(0, 1)
latents = 1 / self.vae.config.scaling_factor * latents
forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward
accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys())
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
decode_kwargs = {}
if accepts_num_frames:
# we only pass num_frames_in if it's expected
decode_kwargs["num_frames"] = num_frames_in
frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch*frames, channels, height, width] -> [batch, channels, frames, height, width]
frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
frames = frames.float()
return frames
def check_inputs(self, image, height, width):
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
def prepare_latents(
self,
shape,
dtype,
device,
generator,
latent=None,
):
if isinstance(generator, list) and len(generator) != shape[0]:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {shape[0]}. Make sure the batch size matches the length of the generators."
)
if latent is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@property
def num_timesteps(self):
return self._num_timesteps
@torch.no_grad()
def __call__(
self,
input_image: Union[List[PIL.Image.Image], torch.FloatTensor],
height: int = 576,
width: int = 768,
num_frames: Optional[int] = None,
num_inference_steps: int = 10,
fps: int = 7,
motion_bucket_id: int = 127,
noise_aug_strength: float = 0.02,
decode_chunk_size: Optional[int] = None,
color_map: str="Spectral",
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
show_progress_bar: bool = True,
match_input_res: bool = True,
depth_pred_last: Optional[torch.FloatTensor] = None,
):
assert height >= 0 and width >=0
assert num_inference_steps >=1
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
# 1. Check inputs. Raise error if not correct
self.check_inputs(input_image, height, width)
# 2. Define call parameters
if isinstance(input_image, list):
batch_size = 1
input_size = input_image[0].size
elif isinstance(input_image, torch.Tensor):
batch_size = input_image.shape[0]
input_size = input_image.shape[:-3:-1]
assert batch_size == 1, "Batch size must be 1 for now"
device = self._execution_device
# 3. Encode input image
image_embeddings = self._encode_image(input_image[0], device)
image_embeddings = image_embeddings.repeat((batch_size, 1, 1))
# NOTE: Stable Diffusion Video was conditioned on fps - 1, which
# is why it is reduced here.
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
fps = fps - 1
# 4. Encode input image using VAE
input_image = self.image_processor.preprocess(input_image, height=height, width=width).to(device)
assert input_image.min() >= -1.0 and input_image.max() <= 1.0
noise = randn_tensor(input_image.shape, generator=generator, device=device, dtype=input_image.dtype)
input_image = input_image + noise_aug_strength * noise
if depth_pred_last is not None:
depth_pred_last = depth_pred_last.to(device)
# resize depth
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
depth_pred_last = resize(depth_pred_last.unsqueeze(1), (height, width), InterpolationMode.NEAREST_EXACT, antialias=True)
depth_pred_last = repeat(depth_pred_last, 'f c h w ->b f c h w', b=batch_size)
rgb_batch = repeat(input_image, 'f c h w ->b f c h w', b=batch_size)
added_time_ids = self._get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
image_embeddings.dtype,
batch_size,
)
added_time_ids = added_time_ids.to(device)
depth_pred_raw = self.single_infer(rgb_batch,
image_embeddings,
added_time_ids,
num_inference_steps,
show_progress_bar,
generator,
depth_pred_last=depth_pred_last,
decode_chunk_size=decode_chunk_size)
depth_colored_img_list = []
depth_frames = []
for i in range(num_frames):
depth_frame = depth_pred_raw[:, i].squeeze()
# Convert to numpy
depth_frame = depth_frame.cpu().numpy().astype(np.float32)
if match_input_res:
pred_img = Image.fromarray(depth_frame)
pred_img = pred_img.resize(input_size, resample=Image.NEAREST)
depth_frame = np.asarray(pred_img)
# Clip output range: current size is the original size
depth_frame = depth_frame.clip(0, 1)
# Colorize
depth_colored = plt.get_cmap(color_map)(depth_frame, bytes=True)[..., :3]
depth_colored_img = Image.fromarray(depth_colored)
depth_colored_img_list.append(depth_colored_img)
depth_frames.append(depth_frame)
depth_frame = np.stack(depth_frames)
self.maybe_free_model_hooks()
return ChronoDepthOutput(
depth_np = depth_frames,
depth_colored = depth_colored_img_list,
)
@torch.no_grad()
def single_infer(self,
input_rgb: torch.Tensor,
image_embeddings: torch.Tensor,
added_time_ids: torch.Tensor,
num_inference_steps: int,
show_pbar: bool,
generator: Optional[Union[torch.Generator, List[torch.Generator]]],
depth_pred_last: Optional[torch.Tensor] = None,
decode_chunk_size=1,
):
device = input_rgb.device
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.vae.to(dtype=torch.float32)
rgb_latent = self.encode_RGB(input_rgb)
rgb_latent = rgb_latent.to(image_embeddings.dtype)
if depth_pred_last is not None:
depth_pred_last = depth_pred_last.repeat(1, 1, 3, 1, 1)
depth_pred_last_latent = self.encode_RGB(depth_pred_last)
depth_pred_last_latent = depth_pred_last_latent.to(image_embeddings.dtype)
else:
depth_pred_last_latent = None
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
depth_latent = self.prepare_latents(
rgb_latent.shape,
image_embeddings.dtype,
device,
generator
)
if show_pbar:
iterable = tqdm(
enumerate(timesteps),
total=len(timesteps),
leave=False,
desc=" " * 4 + "Diffusion denoising",
)
else:
iterable = enumerate(timesteps)
for i, t in iterable:
if depth_pred_last_latent is not None:
known_frames_num = depth_pred_last_latent.shape[1]
epsilon = randn_tensor(
depth_pred_last_latent.shape,
generator=generator,
device=device,
dtype=image_embeddings.dtype
)
depth_latent[:, :known_frames_num] = depth_pred_last_latent + epsilon * self.scheduler.sigmas[i]
depth_latent = self.scheduler.scale_model_input(depth_latent, t)
unet_input = torch.cat([rgb_latent, depth_latent], dim=2)
noise_pred = self.unet(
unet_input, t, image_embeddings, added_time_ids=added_time_ids
)[0]
# compute the previous noisy sample x_t -> x_t-1
depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample
torch.cuda.empty_cache()
if needs_upcasting:
self.vae.to(dtype=torch.float16)
depth = self.decode_depth(depth_latent, decode_chunk_size=decode_chunk_size)
# clip prediction
depth = torch.clip(depth, -1.0, 1.0)
# shift to [0, 1]
depth = (depth + 1.0) / 2.0
return depth
# resizing utils
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out |