from typing import Union, Tuple import torch from diffusers import UNetSpatioTemporalConditionModel from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput class DiffusersUNetSpatioTemporalConditionModelChronodepth( UNetSpatioTemporalConditionModel ): def forward( self, sample: torch.FloatTensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, added_time_ids: torch.Tensor, return_dict: bool = True, ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: r""" The [`UNetSpatioTemporalConditionModel`] forward method. Args: sample (`torch.FloatTensor`): The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.FloatTensor`): The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. added_time_ids: (`torch.FloatTensor`): The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal embeddings and added to the time embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" if isinstance(timestep, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML batch_size, num_frames = sample.shape[:2] # timesteps = timesteps.expand(batch_size) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb) time_embeds = self.add_time_proj(added_time_ids.flatten()) time_embeds = time_embeds.reshape((batch_size, -1)).repeat(num_frames, 1) time_embeds = time_embeds.to(emb.dtype) aug_emb = self.add_embedding(time_embeds) emb = emb + aug_emb # Flatten the batch and frames dimensions # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] sample = sample.flatten(0, 1) # Repeat the embeddings num_video_frames times # emb: [batch, channels] -> [batch * frames, channels] # emb = emb.repeat_interleave(num_frames, dim=0) # TODO: sjh: maybe check later # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] # encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) ######### some modifications by Jiahao ######### # emb: [batch * frames, channels] # no need to be repeated, because different frames have different time embeddings # encoder_hidden_states: [batch * frames, 1, channels] # no need to be repeated, because different frames have different encoder_hidden_states # 2. pre-process sample = self.conv_in(sample) image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) else: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, image_only_indicator=image_only_indicator, ) down_block_res_samples += res_samples # 4. mid sample = self.mid_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) # 5. up for i, upsample_block in enumerate(self.up_blocks): res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, image_only_indicator=image_only_indicator, ) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) # 7. Reshape back to original shape sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) if not return_dict: return (sample,) return UNetSpatioTemporalConditionOutput(sample=sample)