Spaces:
Sleeping
Sleeping
File size: 12,401 Bytes
6fc042a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
""" Front-end: processing raw data input """
import torch
import torch.nn as nn
import torchaudio.functional as ta_F
import torchaudio
class FrontEnd(nn.Module):
def __init__(self, channel='stereo', \
n_fft=2048, \
n_mels=128, \
sample_rate=44100, \
hop_length=None, \
win_length=None, \
window="hann", \
eps=1e-7, \
device=torch.device("cpu")):
super(FrontEnd, self).__init__()
self.channel = channel
self.n_fft = n_fft
self.n_mels = n_mels
self.sample_rate = sample_rate
self.hop_length = n_fft//4 if hop_length==None else hop_length
self.win_length = n_fft if win_length==None else win_length
self.eps = eps
if window=="hann":
self.window = torch.hann_window(window_length=self.win_length, periodic=True).to(device)
elif window=="hamming":
self.window = torch.hamming_window(window_length=self.win_length, periodic=True).to(device)
self.melscale_transform = torchaudio.transforms.MelScale(n_mels=self.n_mels, \
sample_rate=self.sample_rate, \
n_stft=self.n_fft//2+1).to(device)
def forward(self, input, mode):
# front-end function which channel-wise combines all demanded features
# input shape : batch x channel x raw waveform
# output shape : batch x channel x frequency x time
phase_output = None
front_output_list = []
for cur_mode in mode:
# Real & Imaginary
if cur_mode=="cplx":
if self.channel=="mono":
output = torch.stft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
elif self.channel=="stereo":
output_l = torch.stft(input[:,0], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
output_r = torch.stft(input[:,1], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
output = torch.cat((output_l, output_r), axis=-1)
if input.shape[-1] % round(self.n_fft/4) == 0:
output = output[:, :, :-1]
if self.n_fft % 2 == 0:
output = output[:, :-1]
front_output_list.append(output.permute(0, 3, 1, 2))
# Magnitude & Phase or Mel
elif "mag" in cur_mode or "mel" in cur_mode:
if self.channel=="mono":
cur_cplx = torch.stft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
output = self.mag(cur_cplx).unsqueeze(-1)[..., 0:1]
if "mag_phase" in cur_mode:
phase = self.phase(cur_cplx)
if "mel" in cur_mode:
output = self.melscale_transform(output.squeeze(-1)).unsqueeze(-1)
elif self.channel=="stereo":
cplx_l = torch.stft(input[:,0], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
cplx_r = torch.stft(input[:,1], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
mag_l = self.mag(cplx_l).unsqueeze(-1)
mag_r = self.mag(cplx_r).unsqueeze(-1)
output = torch.cat((mag_l, mag_r), axis=-1)
if "mag_phase" in cur_mode:
phase_l = self.phase(cplx_l).unsqueeze(-1)
phase_r = self.phase(cplx_r).unsqueeze(-1)
output = torch.cat((mag_l, phase_l, mag_r, phase_r), axis=-1)
if "mel" in cur_mode:
output = torch.cat((self.melscale_transform(mag_l.squeeze(-1)).unsqueeze(-1), self.melscale_transform(mag_r.squeeze(-1)).unsqueeze(-1)), axis=-1)
if "log" in cur_mode:
output = torch.log(output+self.eps)
if input.shape[-1] % round(self.n_fft/4) == 0:
output = output[:, :, :-1]
if cur_mode!="mel" and self.n_fft % 2 == 0: # discard highest frequency
output = output[:, 1:]
front_output_list.append(output.permute(0, 3, 1, 2))
# combine all demanded features
if not front_output_list:
raise NameError("NameError at FrontEnd: check using features for front-end")
elif len(mode)!=1:
for i, cur_output in enumerate(front_output_list):
if i==0:
front_output = cur_output
else:
front_output = torch.cat((front_output, cur_output), axis=1)
else:
front_output = front_output_list[0]
return front_output
def mag(self, cplx_input, eps=1e-07):
# mag_summed = cplx_input.pow(2.).sum(-1) + eps
mag_summed = cplx_input.real.pow(2.) + cplx_input.imag.pow(2.) + eps
return mag_summed.pow(0.5)
def phase(self, cplx_input, ):
return torch.atan2(cplx_input.imag, cplx_input.real)
# return torch.angle(cplx_input)
class BackEnd(nn.Module):
def __init__(self, channel='stereo', \
n_fft=2048, \
hop_length=None, \
win_length=None, \
window="hann", \
eps=1e-07, \
orig_freq=44100, \
new_freq=16000, \
device=torch.device("cpu")):
super(BackEnd, self).__init__()
self.device = device
self.channel = channel
self.n_fft = n_fft
self.hop_length = n_fft//4 if hop_length==None else hop_length
self.win_length = n_fft if win_length==None else win_length
self.eps = eps
if window=="hann":
self.window = torch.hann_window(window_length=self.win_length, periodic=True).to(self.device)
elif window=="hamming":
self.window = torch.hamming_window(window_length=self.win_length, periodic=True).to(self.device)
self.resample_func_8k = torchaudio.transforms.Resample(orig_freq=orig_freq, new_freq=8000).to(self.device)
self.resample_func = torchaudio.transforms.Resample(orig_freq=orig_freq, new_freq=new_freq).to(self.device)
def magphase_to_cplx(self, magphase_spec):
real = magphase_spec[..., 0] * torch.cos(magphase_spec[..., 1])
imaginary = magphase_spec[..., 0] * torch.sin(magphase_spec[..., 1])
return torch.cat((real.unsqueeze(-1), imaginary.unsqueeze(-1)), dim=-1)
def forward(self, input, phase, mode):
# back-end function which convert output spectrograms into waveform
# input shape : batch x channel x frequency x time
# output shape : batch x channel x raw waveform
# convert to shape : batch x frequency x time x channel
input = input.permute(0, 2, 3, 1)
# pad highest frequency
pad = torch.zeros((input.shape[0], 1, input.shape[2], input.shape[3])).to(self.device)
input = torch.cat((pad, input), dim=1)
back_output_list = []
channel_count = 0
for i, cur_mode in enumerate(mode):
# Real & Imaginary
if cur_mode=="cplx":
if self.channel=="mono":
output = ta_F.istft(input[...,channel_count:channel_count+2], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window).unsqueeze(1)
channel_count += 2
elif self.channel=="stereo":
cplx_spec = torch.cat([input[...,channel_count:channel_count+2], input[...,channel_count+2:channel_count+4]], dim=0)
output_wav = ta_F.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
output = torch.cat((output_wav[:output_wav.shape[0]//2].unsqueeze(1), output_wav[output_wav.shape[0]//2:].unsqueeze(1)), dim=1)
channel_count += 4
back_output_list.append(output)
# Magnitude & Phase
elif cur_mode=="mag_phase" or cur_mode=="mag":
if self.channel=="mono":
if cur_mode=="mag":
input_spec = torch.cat((input[...,channel_count:channel_count+1], phase), axis=-1)
channel_count += 1
else:
input_spec = input[...,channel_count:channel_count+2]
channel_count += 2
cplx_spec = self.magphase_to_cplx(input_spec)
output = ta_F.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window).unsqueeze(1)
elif self.channel=="stereo":
if cur_mode=="mag":
input_spec_l = torch.cat((input[...,channel_count:channel_count+1], phase[...,0:1]), axis=-1)
input_spec_r = torch.cat((input[...,channel_count+1:channel_count+2], phase[...,1:2]), axis=-1)
channel_count += 2
else:
input_spec_l = input[...,channel_count:channel_count+2]
input_spec_r = input[...,channel_count+2:channel_count+4]
channel_count += 4
cplx_spec_l = self.magphase_to_cplx(input_spec_l)
cplx_spec_r = self.magphase_to_cplx(input_spec_r)
cplx_spec = torch.cat([cplx_spec_l, cplx_spec_r], dim=0)
output_wav = torch.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
output = torch.cat((output_wav[:output_wav.shape[0]//2].unsqueeze(1), output_wav[output_wav.shape[0]//2:].unsqueeze(1)), dim=1)
channel_count += 4
back_output_list.append(output)
elif cur_mode=="griff":
if self.channel=="mono":
output = self.griffin_lim(input.squeeze(-1), input.device).unsqueeze(1)
# output = self.griff(input.permute(0, 3, 1, 2))
else:
output_l = self.griffin_lim(input[..., 0], input.device).unsqueeze(1)
output_r = self.griffin_lim(input[..., 1], input.device).unsqueeze(1)
output = torch.cat((output_l, output_r), axis=1)
back_output_list.append(output)
# combine all demanded feature outputs
if not back_output_list:
raise NameError("NameError at BackEnd: check using features for back-end")
elif len(mode)!=1:
for i, cur_output in enumerate(back_output_list):
if i==0:
back_output = cur_output
else:
back_output = torch.cat((back_output, cur_output), axis=1)
else:
back_output = back_output_list[0]
return back_output
def griffin_lim(self, l_est, gpu, n_iter=100):
l_est = l_est.cpu().detach()
l_est = torch.pow(l_est, 1/0.80)
# l_est [batch, channel, time]
l_mag = l_est.unsqueeze(-1)
l_phase = 2 * np.pi * torch.rand_like(l_mag) - np.pi
real = l_mag * torch.cos(l_phase)
imag = l_mag * torch.sin(l_phase)
S = torch.cat((real, imag), axis=-1)
S_mag = (real**2 + imag**2 + self.eps) ** 1/2
for i in range(n_iter):
x = ta_F.istft(S, n_fft=2048, hop_length=512, win_length=2048, window=torch.hann_window(2048))
S_new = torch.stft(x, n_fft=2048, hop_length=512, win_length=2048, window=torch.hann_window(2048))
S_new_phase = S_new/mag(S_new)
S = S_mag * S_new_phase
return x / torch.max(torch.abs(x))
|