Spaces:
Sleeping
Sleeping
""" | |
Implementation of objective functions used in the task 'ITO-Master' | |
""" | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import auraloss | |
import os | |
import sys | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
sys.path.append(os.path.dirname(currentdir)) | |
from modules.front_back_end import * | |
# Root Mean Squared Loss | |
# penalizes the volume factor with non-linearlity | |
class RMSLoss(nn.Module): | |
def __init__(self, reduce, loss_type="l2"): | |
super(RMSLoss, self).__init__() | |
self.weight_factor = 100. | |
if loss_type=="l2": | |
self.loss = nn.MSELoss(reduce=None) | |
def forward(self, est_targets, targets): | |
est_targets = est_targets.reshape(est_targets.shape[0]*est_targets.shape[1], est_targets.shape[2]) | |
targets = targets.reshape(targets.shape[0]*targets.shape[1], targets.shape[2]) | |
normalized_est = torch.sqrt(torch.mean(est_targets**2, dim=-1)) | |
normalized_tgt = torch.sqrt(torch.mean(targets**2, dim=-1)) | |
weight = torch.clamp(torch.abs(normalized_tgt-normalized_est), min=1/self.weight_factor) * self.weight_factor | |
return torch.mean(weight**1.5 * self.loss(normalized_est, normalized_tgt)) | |
# Multi-Scale Spectral Loss proposed at the paper "DDSP: DIFFERENTIABLE DIGITAL SIGNAL PROCESSING" (https://arxiv.org/abs/2001.04643) | |
# we extend this loss by applying it to mid/side channels | |
class MultiScale_Spectral_Loss_MidSide_DDSP(nn.Module): | |
def __init__(self, mode='midside', \ | |
reduce=True, \ | |
n_filters=None, \ | |
windows_size=None, \ | |
hops_size=None, \ | |
window="hann", \ | |
eps=1e-7, \ | |
device=torch.device("cpu")): | |
super(MultiScale_Spectral_Loss_MidSide_DDSP, self).__init__() | |
self.mode = mode | |
self.eps = eps | |
self.mid_weight = 0.5 # value in the range of 0.0 ~ 1.0 | |
self.logmag_weight = 0.1 | |
if n_filters is None: | |
n_filters = [4096, 2048, 1024, 512] | |
if windows_size is None: | |
windows_size = [4096, 2048, 1024, 512] | |
if hops_size is None: | |
hops_size = [1024, 512, 256, 128] | |
self.multiscales = [] | |
for i in range(len(windows_size)): | |
cur_scale = {'window_size' : float(windows_size[i])} | |
if self.mode=='midside': | |
cur_scale['front_end'] = FrontEnd(channel='mono', \ | |
n_fft=n_filters[i], \ | |
hop_length=hops_size[i], \ | |
win_length=windows_size[i], \ | |
window=window, \ | |
device=device) | |
elif self.mode=='ori': | |
cur_scale['front_end'] = FrontEnd(channel='stereo', \ | |
n_fft=n_filters[i], \ | |
hop_length=hops_size[i], \ | |
win_length=windows_size[i], \ | |
window=window, \ | |
device=device) | |
self.multiscales.append(cur_scale) | |
self.objective_l1 = nn.L1Loss(reduce=reduce) | |
self.objective_l2 = nn.MSELoss(reduce=reduce) | |
def forward(self, est_targets, targets): | |
if self.mode=='midside': | |
return self.forward_midside(est_targets, targets) | |
elif self.mode=='ori': | |
return self.forward_ori(est_targets, targets) | |
def forward_ori(self, est_targets, targets): | |
total_loss = 0.0 | |
total_mag_loss = 0.0 | |
total_logmag_loss = 0.0 | |
for cur_scale in self.multiscales: | |
est_mag = cur_scale['front_end'](est_targets, mode=["mag"]) | |
tgt_mag = cur_scale['front_end'](targets, mode=["mag"]) | |
mag_loss = self.magnitude_loss(est_mag, tgt_mag) | |
logmag_loss = self.log_magnitude_loss(est_mag, tgt_mag) | |
total_mag_loss += mag_loss | |
total_logmag_loss += logmag_loss | |
# return total_loss | |
return (1-self.logmag_weight)*total_mag_loss + \ | |
(self.logmag_weight)*total_logmag_loss | |
def forward_midside(self, est_targets, targets): | |
est_mid, est_side = self.to_mid_side(est_targets) | |
tgt_mid, tgt_side = self.to_mid_side(targets) | |
total_loss = 0.0 | |
total_mag_loss = 0.0 | |
total_logmag_loss = 0.0 | |
for cur_scale in self.multiscales: | |
est_mid_mag = cur_scale['front_end'](est_mid, mode=["mag"]) | |
est_side_mag = cur_scale['front_end'](est_side, mode=["mag"]) | |
tgt_mid_mag = cur_scale['front_end'](tgt_mid, mode=["mag"]) | |
tgt_side_mag = cur_scale['front_end'](tgt_side, mode=["mag"]) | |
mag_loss = self.mid_weight*self.magnitude_loss(est_mid_mag, tgt_mid_mag) + \ | |
(1-self.mid_weight)*self.magnitude_loss(est_side_mag, tgt_side_mag) | |
logmag_loss = self.mid_weight*self.log_magnitude_loss(est_mid_mag, tgt_mid_mag) + \ | |
(1-self.mid_weight)*self.log_magnitude_loss(est_side_mag, tgt_side_mag) | |
total_mag_loss += mag_loss | |
total_logmag_loss += logmag_loss | |
# return total_loss | |
return (1-self.logmag_weight)*total_mag_loss + \ | |
(self.logmag_weight)*total_logmag_loss | |
def to_mid_side(self, stereo_in): | |
mid = stereo_in[:,0] + stereo_in[:,1] | |
side = stereo_in[:,0] - stereo_in[:,1] | |
return mid, side | |
def magnitude_loss(self, est_mag_spec, tgt_mag_spec): | |
return torch.norm(self.objective_l1(est_mag_spec, tgt_mag_spec)) | |
def log_magnitude_loss(self, est_mag_spec, tgt_mag_spec): | |
est_log_mag_spec = torch.log10(est_mag_spec+self.eps) | |
tgt_log_mag_spec = torch.log10(tgt_mag_spec+self.eps) | |
return self.objective_l2(est_log_mag_spec, tgt_log_mag_spec) | |
# Class of available loss functions | |
class Loss: | |
def __init__(self, args, reduce=True): | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device(f"cuda:{args.gpu}") | |
self.l1 = nn.L1Loss(reduce=reduce) | |
self.mse = nn.MSELoss(reduce=reduce) | |
self.ce = nn.CrossEntropyLoss() | |
self.triplet = nn.TripletMarginLoss(margin=1., p=2) | |
self.cos = nn.CosineSimilarity(eps=args.eps) | |
self.cosemb = nn.CosineEmbeddingLoss() | |
self.multi_scale_spectral_midside = MultiScale_Spectral_Loss_MidSide_DDSP(mode='midside', eps=args.eps, device=device) | |
self.multi_scale_spectral_ori = MultiScale_Spectral_Loss_MidSide_DDSP(mode='ori', eps=args.eps, device=device) | |
self.gain = RMSLoss(reduce=reduce) | |
# perceptual weighting with mel scaled spectrograms | |
self.mrs_mel_perceptual = auraloss.freq.MultiResolutionSTFTLoss( | |
fft_sizes=[1024, 2048, 8192], | |
hop_sizes=[256, 512, 2048], | |
win_lengths=[1024, 2048, 8192], | |
scale="mel", | |
n_bins=128, | |
sample_rate=args.sample_rate, | |
perceptual_weighting=True, | |
) | |
import laion_clap | |
import torchaudio | |
# CLAP feature loss | |
class CLAPFeatureLoss(nn.Module): | |
def __init__(self): | |
super(CLAPFeatureLoss, self).__init__() | |
self.target_sample_rate = 48000 # CLAP expects 48kHz audio | |
self.model = laion_clap.CLAP_Module(enable_fusion=False) | |
self.model.load_ckpt() # download the default pretrained checkpoint | |
self.model.eval() | |
def forward(self, input_audio, target, sample_rate, distance_fn='cosine'): | |
# Process input audio | |
input_embed = self.process_audio(input_audio, sample_rate) | |
# Process target (audio or text) | |
if isinstance(target, torch.Tensor): | |
target_embed = self.process_audio(target, sample_rate) | |
elif isinstance(target, str) or (isinstance(target, list) and isinstance(target[0], str)): | |
target_embed = self.process_text(target) | |
else: | |
raise ValueError("Target must be either audio tensor or text (string or list of strings)") | |
# Compute loss using the specified distance function | |
loss = self.compute_distance(input_embed, target_embed, distance_fn) | |
return loss | |
def process_audio(self, audio, sample_rate): | |
# Ensure input is in the correct shape (N, C, T) | |
if audio.dim() == 2: | |
audio = audio.unsqueeze(1) | |
# Convert to mono if stereo | |
if audio.shape[1] > 1: | |
audio = audio.mean(dim=1, keepdim=True) | |
# Resample if necessary | |
if sample_rate != self.target_sample_rate: | |
audio = self.resample(audio, sample_rate) | |
audio = audio.squeeze(1) | |
# Get CLAP embeddings | |
embed = self.model.get_audio_embedding_from_data(x=audio, use_tensor=True) | |
return embed | |
def process_text(self, text): | |
# Get CLAP embeddings for text | |
# ensure input is a list of strings | |
if not isinstance(text, list): | |
text = [text] | |
embed = self.model.get_text_embedding(text, use_tensor=True) | |
return embed | |
def compute_distance(self, x, y, distance_fn): | |
if distance_fn == 'mse': | |
return F.mse_loss(x, y) | |
elif distance_fn == 'l1': | |
return F.l1_loss(x, y) | |
elif distance_fn == 'cosine': | |
return 1 - F.cosine_similarity(x, y).mean() | |
else: | |
raise ValueError(f"Unsupported distance function: {distance_fn}") | |
def resample(self, audio, input_sample_rate): | |
resampler = torchaudio.transforms.Resample( | |
orig_freq=input_sample_rate, new_freq=self.target_sample_rate | |
).to(audio.device) | |
return resampler(audio) | |
""" | |
Audio Feature Loss implementation | |
copied from https://github.com/sai-soum/Diff-MST/blob/main/mst/loss.py | |
""" | |
import librosa | |
from typing import List | |
from modules.filter import barkscale_fbanks | |
def compute_mid_side(x: torch.Tensor): | |
x_mid = x[:, 0, :] + x[:, 1, :] | |
x_side = x[:, 0, :] - x[:, 1, :] | |
return x_mid, x_side | |
def compute_melspectrum( | |
x: torch.Tensor, | |
sample_rate: int = 44100, | |
fft_size: int = 32768, | |
n_bins: int = 128, | |
**kwargs, | |
): | |
"""Compute mel-spectrogram. | |
Args: | |
x: (bs, 2, seq_len) | |
sample_rate: sample rate of audio | |
fft_size: size of fft | |
n_bins: number of mel bins | |
Returns: | |
X: (bs, n_bins) | |
""" | |
fb = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=n_bins) | |
fb = torch.tensor(fb).unsqueeze(0).type_as(x) | |
x = x.mean(dim=1, keepdim=True) | |
X = torch.fft.rfft(x, n=fft_size, dim=-1) | |
X = torch.abs(X) | |
X = torch.mean(X, dim=1, keepdim=True) # take mean over time | |
X = X.permute(0, 2, 1) # swap time and freq dims | |
X = torch.matmul(fb, X) | |
X = torch.log(X + 1e-8) | |
return X | |
def compute_barkspectrum( | |
x: torch.Tensor, | |
fft_size: int = 32768, | |
n_bands: int = 24, | |
sample_rate: int = 44100, | |
f_min: float = 20.0, | |
f_max: float = 20000.0, | |
mode: str = "mid-side", | |
**kwargs, | |
): | |
"""Compute bark-spectrogram. | |
Args: | |
x: (bs, 2, seq_len) | |
fft_size: size of fft | |
n_bands: number of bark bins | |
sample_rate: sample rate of audio | |
f_min: minimum frequency | |
f_max: maximum frequency | |
mode: "mono", "stereo", or "mid-side" | |
Returns: | |
X: (bs, 24) | |
""" | |
# compute filterbank | |
fb = barkscale_fbanks((fft_size // 2) + 1, f_min, f_max, n_bands, sample_rate) | |
fb = fb.unsqueeze(0).type_as(x) | |
fb = fb.permute(0, 2, 1) | |
if mode == "mono": | |
x = x.mean(dim=1) # average over channels | |
signals = [x] | |
elif mode == "stereo": | |
signals = [x[:, 0, :], x[:, 1, :]] | |
elif mode == "mid-side": | |
x_mid = x[:, 0, :] + x[:, 1, :] | |
x_side = x[:, 0, :] - x[:, 1, :] | |
signals = [x_mid, x_side] | |
else: | |
raise ValueError(f"Invalid mode {mode}") | |
outputs = [] | |
for signal in signals: | |
X = torch.stft( | |
signal, | |
n_fft=fft_size, | |
hop_length=fft_size // 4, | |
return_complex=True, | |
window=torch.hann_window(fft_size).to(x.device), | |
) # compute stft | |
X = torch.abs(X) # take magnitude | |
X = torch.mean(X, dim=-1, keepdim=True) # take mean over time | |
# X = X.permute(0, 2, 1) # swap time and freq dims | |
X = torch.matmul(fb, X) # apply filterbank | |
X = torch.log(X + 1e-8) | |
# X = torch.cat([X, X_log], dim=-1) | |
outputs.append(X) | |
# stack into tensor | |
X = torch.cat(outputs, dim=-1) | |
return X | |
def compute_rms(x: torch.Tensor, **kwargs): | |
"""Compute root mean square energy. | |
Args: | |
x: (bs, 1, seq_len) | |
Returns: | |
rms: (bs, ) | |
""" | |
rms = torch.sqrt(torch.mean(x**2, dim=-1).clamp(min=1e-8)) | |
return rms | |
def compute_crest_factor(x: torch.Tensor, **kwargs): | |
"""Compute crest factor as ratio of peak to rms energy in dB. | |
Args: | |
x: (bs, 2, seq_len) | |
""" | |
num = torch.max(torch.abs(x), dim=-1)[0] | |
den = compute_rms(x).clamp(min=1e-8) | |
cf = 20 * torch.log10((num / den).clamp(min=1e-8)) | |
return cf | |
def compute_stereo_width(x: torch.Tensor, **kwargs): | |
"""Compute stereo width as ratio of energy in sum and difference signals. | |
Args: | |
x: (bs, 2, seq_len) | |
""" | |
bs, chs, seq_len = x.size() | |
assert chs == 2, "Input must be stereo" | |
# compute sum and diff of stereo channels | |
x_sum = x[:, 0, :] + x[:, 1, :] | |
x_diff = x[:, 0, :] - x[:, 1, :] | |
# compute power of sum and diff | |
sum_energy = torch.mean(x_sum**2, dim=-1) | |
diff_energy = torch.mean(x_diff**2, dim=-1) | |
# compute stereo width as ratio | |
stereo_width = diff_energy / sum_energy.clamp(min=1e-8) | |
return stereo_width | |
def compute_stereo_imbalance(x: torch.Tensor, **kwargs): | |
"""Compute stereo imbalance as ratio of energy in left and right channels. | |
Args: | |
x: (bs, 2, seq_len) | |
Returns: | |
stereo_imbalance: (bs, ) | |
""" | |
left_energy = torch.mean(x[:, 0, :] ** 2, dim=-1) | |
right_energy = torch.mean(x[:, 1, :] ** 2, dim=-1) | |
stereo_imbalance = (right_energy - left_energy) / ( | |
right_energy + left_energy | |
).clamp(min=1e-8) | |
return stereo_imbalance | |
class AudioFeatureLoss(torch.nn.Module): | |
def __init__( | |
self, | |
weights: List[float], | |
sample_rate: int, | |
stem_separation: bool = False, | |
use_clap: bool = False, | |
) -> None: | |
"""Compute loss using a set of differentiable audio features. | |
Args: | |
weights: weights for each feature | |
sample_rate: sample rate of audio | |
stem_separation: whether to compute loss on stems or mix | |
Based on features proposed in: | |
Man, B. D., et al. | |
"An analysis and evaluation of audio features for multitrack music mixtures." | |
(2014). | |
""" | |
super().__init__() | |
self.weights = weights | |
self.sample_rate = sample_rate | |
self.stem_separation = stem_separation | |
self.sources_list = ["mix"] | |
self.source_weights = [1.0] | |
self.use_clap = use_clap | |
self.transforms = [ | |
compute_rms, | |
compute_crest_factor, | |
compute_stereo_width, | |
compute_stereo_imbalance, | |
compute_barkspectrum, | |
] | |
assert len(self.transforms) == len(weights) | |
def forward(self, input: torch.Tensor, target: torch.Tensor): | |
losses = {} | |
# reshape for example stem dim | |
input_stems = input.unsqueeze(1) | |
target_stems = target.unsqueeze(1) | |
n_stems = input_stems.shape[1] | |
# iterate over each stem compute loss for each transform | |
for stem_idx in range(n_stems): | |
input_stem = input_stems[:, stem_idx, ...] | |
target_stem = target_stems[:, stem_idx, ...] | |
for transform, weight in zip(self.transforms, self.weights): | |
transform_name = "_".join(transform.__name__.split("_")[1:]) | |
key = f"{self.sources_list[stem_idx]}-{transform_name}" | |
input_transform = transform(input_stem, sample_rate=self.sample_rate) | |
target_transform = transform(target_stem, sample_rate=self.sample_rate) | |
val = torch.nn.functional.mse_loss(input_transform, target_transform) | |
losses[key] = weight * val * self.source_weights[stem_idx] | |
return losses | |