Spaces:
Sleeping
Sleeping
""" | |
Common miscellaneous functions. | |
AI Music Technology Group, Sony Group Corporation | |
AI Speech and Sound Group, Sony Europe | |
This implementation originally belongs to Sony Group Corporation, | |
which has been introduced in the work "Automatic music mixing with deep learning and out-of-domain data". | |
Original repo link: https://github.com/sony/FxNorm-automix | |
""" | |
import os | |
import psutil | |
import sys | |
import numpy as np | |
import librosa | |
import torch | |
import math | |
def uprint(s): | |
""" | |
Unbuffered print to stdout. | |
We also flush stderr to have the log-file in sync. | |
Args: | |
s: string to print | |
""" | |
print(s) | |
sys.stdout.flush() | |
sys.stderr.flush() | |
def recursive_getattr(obj, attr): | |
""" | |
Run `getattr` recursively (e.g., for `fc1.weight`). | |
Args: | |
obj: object | |
attr: attribute to get | |
Returns: | |
object | |
""" | |
for a in attr.split('.'): | |
obj = getattr(obj, a) | |
return obj | |
def compute_stft(samples, hop_length, fft_size, stft_window): | |
""" | |
Compute the STFT of `samples` applying a Hann window of size `FFT_SIZE`, shifted for each frame by `hop_length`. | |
Args: | |
samples: num samples x channels | |
hop_length: window shift in samples | |
fft_size: FFT size which is also the window size | |
stft_window: STFT analysis window | |
Returns: | |
stft: frames x channels x freqbins | |
""" | |
n_channels = samples.shape[1] | |
n_frames = 1+int((samples.shape[0] - fft_size)/hop_length) | |
stft = np.empty((n_frames, n_channels, fft_size//2+1), dtype=np.complex64) | |
# convert into f_contiguous (such that [:,n] slicing is c_contiguous) | |
samples = np.asfortranarray(samples) | |
for n in range(n_channels): | |
# compute STFT (output has size `n_frames x N_BINS`) | |
stft[:, n, :] = librosa.stft(samples[:, n], | |
n_fft=fft_size, | |
hop_length=hop_length, | |
window=stft_window, | |
center=False).transpose() | |
return stft | |
def compute_istft(stft, hop_length, stft_window): | |
""" | |
Compute the inverse STFT of `stft`. | |
Args: | |
stft: frames x channels x freqbins | |
hop_length: window shift in samples | |
stft_window: STFT synthesis window | |
Returns: | |
samples: num samples x channels | |
""" | |
for n in range(stft.shape[1]): | |
s = librosa.istft(stft[:, n, :].transpose(), | |
hop_length=hop_length, window=stft_window, center=False) | |
if n == 0: | |
samples = s | |
else: | |
samples = np.column_stack((samples, s)) | |
# ensure that we have a 2d array (monaural files are just loaded as vectors) | |
if samples.ndim == 1: | |
samples = samples[:, np.newaxis] | |
return samples | |
def get_size(obj): | |
""" | |
Recursively find size of objects (in bytes). | |
Args: | |
obj: object | |
Returns: | |
size of object | |
""" | |
size = sys.getsizeof(obj) | |
import functools | |
if isinstance(obj, dict): | |
size += sum([get_size(v) for v in obj.values()]) | |
size += sum([get_size(k) for k in obj.keys()]) | |
elif isinstance(obj, functools.partial): | |
size += sum([get_size(v) for v in obj.keywords.values()]) | |
size += sum([get_size(k) for k in obj.keywords.keys()]) | |
elif isinstance(obj, list): | |
size += sum([get_size(i) for i in obj]) | |
elif isinstance(obj, tuple): | |
size += sum([get_size(i) for i in obj]) | |
return size | |
def get_process_memory(): | |
""" | |
Return memory consumption in GBytes. | |
Returns: | |
memory used by the process | |
""" | |
return psutil.Process(os.getpid()).memory_info()[0] / (2 ** 30) | |
def check_complete_convolution(input_size, kernel_size, stride=1, | |
padding=0, dilation=1, note=''): | |
""" | |
Check where the convolution is complete. | |
Returns true if no time steps left over in a Conv1d | |
Args: | |
input_size: size of input | |
kernel_size: size of kernel | |
stride: stride | |
padding: padding | |
dilation: dilation | |
note: string for additional notes | |
""" | |
is_complete = ((input_size + 2*padding - dilation * (kernel_size - 1) - 1) | |
/ stride + 1).is_integer() | |
uprint(f'{note} {is_complete}') | |
def pad_to_shape(x: torch.Tensor, y: int) -> torch.Tensor: | |
""" | |
Right-pad or right-trim first argument last dimension to have same size as second argument. | |
Args: | |
x: Tensor to be padded. | |
y: Size to pad/trim x last dimension to | |
Returns: | |
`x` padded to match `y`'s dimension. | |
""" | |
inp_len = y | |
output_len = x.shape[-1] | |
return torch.nn.functional.pad(x, [0, inp_len - output_len]) | |
def valid_length(input_size, kernel_size, stride=1, padding=0, dilation=1): | |
""" | |
Return the nearest valid upper length to use with the model so that there is no time steps left over in a 1DConv. | |
For all layers, size of the (input - kernel_size) % stride = 0. | |
Here valid means that there is no left over frame neglected and discarded. | |
Args: | |
input_size: size of input | |
kernel_size: size of kernel | |
stride: stride | |
padding: padding | |
dilation: dilation | |
Returns: | |
valid length for convolution | |
""" | |
length = math.ceil((input_size + 2*padding - dilation * (kernel_size - 1) - 1)/stride) + 1 | |
length = (length - 1) * stride - 2*padding + dilation * (kernel_size - 1) + 1 | |
return int(length) | |
def td_length_from_fd(fd_length: int, fft_size: int, fft_hop: int) -> int: | |
""" | |
Return the length in time domain, given the length in frequency domain. | |
Return the necessary length in the time domain of a signal to be transformed into | |
a signal of length `fd_length` in time-frequency domain with the given STFT | |
parameters `fft_size` and `fft_hop`. No padding is assumed. | |
Args: | |
fd_length: length in frequency domain | |
fft_size: size of FFT | |
fft_hop: hop length | |
Returns: | |
length in time domain | |
""" | |
return (fd_length - 1) * fft_hop + fft_size | |