Spaces:
Sleeping
Sleeping
first push
Browse files- README.md +20 -14
- app.py +55 -0
- inference.py +262 -0
- models/mastering_effects_encoder.pt +3 -0
- models/white_box_converter.pt +3 -0
- networks/configs.yaml +37 -0
- requirements.txt +7 -0
- utils.py +12 -0
README.md
CHANGED
@@ -1,14 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
Check
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Mastering Style Transfer Demo
|
2 |
+
|
3 |
+
This demo allows you to perform mastering style transfer on audio files or YouTube videos.
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
1. Choose either the "Upload Audio" or "YouTube URLs" tab.
|
8 |
+
2. For audio upload:
|
9 |
+
- Upload an input audio file and a reference audio file.
|
10 |
+
- Check the "Perform ITO" box if you want to use Inference Time Optimization.
|
11 |
+
- Click "Process" to generate the mastered audio.
|
12 |
+
3. For YouTube URLs:
|
13 |
+
- Enter the URLs for the input and reference audio.
|
14 |
+
- Check the "Perform ITO" box if you want to use Inference Time Optimization.
|
15 |
+
- Click "Process" to generate the mastered audio.
|
16 |
+
4. Listen to the output audio and download if desired.
|
17 |
+
|
18 |
+
## Note
|
19 |
+
|
20 |
+
This demo uses pre-trained models for mastering style transfer. The quality of the output may vary depending on the input and reference audio characteristics.
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import soundfile as sf
|
4 |
+
import numpy as np
|
5 |
+
from inference import MasteringStyleTransfer
|
6 |
+
from utils import download_youtube_audio
|
7 |
+
|
8 |
+
# Initialize MasteringStyleTransfer
|
9 |
+
args = type('Args', (), {
|
10 |
+
"model_path": "models/mastering_converter.pt",
|
11 |
+
"encoder_path": "models/effects_encoder.pt",
|
12 |
+
"sample_rate": 44100,
|
13 |
+
"path_to_config": "networks/configs.yaml"
|
14 |
+
})()
|
15 |
+
mastering_transfer = MasteringStyleTransfer(args)
|
16 |
+
|
17 |
+
def process_audio(input_audio, reference_audio, perform_ito):
|
18 |
+
# Process the audio files
|
19 |
+
output_audio, predicted_params, ito_output_audio, ito_predicted_params, _, sr, _ = mastering_transfer.process_audio(
|
20 |
+
input_audio, reference_audio, reference_audio, {}, perform_ito
|
21 |
+
)
|
22 |
+
|
23 |
+
# Save the output audio
|
24 |
+
sf.write("output_mastered.wav", output_audio.T, sr)
|
25 |
+
if ito_output_audio is not None:
|
26 |
+
sf.write("ito_output_mastered.wav", ito_output_audio.T, sr)
|
27 |
+
|
28 |
+
return "output_mastered.wav", "ito_output_mastered.wav" if ito_output_audio is not None else None
|
29 |
+
|
30 |
+
def process_youtube(input_url, reference_url, perform_ito):
|
31 |
+
input_audio = download_youtube_audio(input_url)
|
32 |
+
reference_audio = download_youtube_audio(reference_url)
|
33 |
+
return process_audio(input_audio, reference_audio, perform_ito)
|
34 |
+
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("# Mastering Style Transfer Demo")
|
37 |
+
with gr.Tab("Upload Audio"):
|
38 |
+
input_audio = gr.Audio(label="Input Audio")
|
39 |
+
reference_audio = gr.Audio(label="Reference Audio")
|
40 |
+
perform_ito = gr.Checkbox(label="Perform ITO")
|
41 |
+
submit_button = gr.Button("Process")
|
42 |
+
output_audio = gr.Audio(label="Output Audio")
|
43 |
+
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
44 |
+
submit_button.click(process_audio, inputs=[input_audio, reference_audio, perform_ito], outputs=[output_audio, ito_output_audio])
|
45 |
+
|
46 |
+
with gr.Tab("YouTube URLs"):
|
47 |
+
input_url = gr.Textbox(label="Input YouTube URL")
|
48 |
+
reference_url = gr.Textbox(label="Reference YouTube URL")
|
49 |
+
perform_ito_yt = gr.Checkbox(label="Perform ITO")
|
50 |
+
submit_button_yt = gr.Button("Process")
|
51 |
+
output_audio_yt = gr.Audio(label="Output Audio")
|
52 |
+
ito_output_audio_yt = gr.Audio(label="ITO Output Audio")
|
53 |
+
submit_button_yt.click(process_youtube, inputs=[input_url, reference_url, perform_ito_yt], outputs=[output_audio_yt, ito_output_audio_yt])
|
54 |
+
|
55 |
+
demo.launch()
|
inference.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import soundfile as sf
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
import yaml
|
7 |
+
|
8 |
+
import sys
|
9 |
+
currentdir = os.path.dirname(os.path.realpath(__file__))
|
10 |
+
sys.path.append(os.path.dirname(currentdir))
|
11 |
+
from networks import Dasp_Mastering_Style_Transfer, Effects_Encoder
|
12 |
+
from modules import FrontEnd, BackEnd
|
13 |
+
from modules.loss import AudioFeatureLoss
|
14 |
+
|
15 |
+
class MasteringStyleTransfer:
|
16 |
+
def __init__(self, args):
|
17 |
+
self.args = args
|
18 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# Load models
|
21 |
+
self.effects_encoder = self.load_effects_encoder()
|
22 |
+
self.mastering_converter = self.load_mastering_converter()
|
23 |
+
|
24 |
+
def load_effects_encoder(self):
|
25 |
+
effects_encoder = Effects_Encoder(self.args.cfg_enc)
|
26 |
+
reload_weights(effects_encoder, self.args.encoder_path, self.device)
|
27 |
+
effects_encoder.to(self.device)
|
28 |
+
effects_encoder.eval()
|
29 |
+
return effects_encoder
|
30 |
+
|
31 |
+
def load_mastering_converter(self):
|
32 |
+
mastering_converter = Dasp_Mastering_Style_Transfer(num_features=2048,
|
33 |
+
sample_rate=self.args.sample_rate,
|
34 |
+
tgt_fx_names=['eq', 'distortion', 'multiband_comp', 'gain', 'imager', 'limiter'],
|
35 |
+
model_type='tcn',
|
36 |
+
config=self.args.cfg_converter,
|
37 |
+
batch_size=1)
|
38 |
+
reload_weights(mastering_converter, self.args.model_path, self.device)
|
39 |
+
mastering_converter.to(self.device)
|
40 |
+
mastering_converter.eval()
|
41 |
+
return mastering_converter
|
42 |
+
|
43 |
+
def get_reference_embedding(self, reference_tensor):
|
44 |
+
with torch.no_grad():
|
45 |
+
reference_feature = self.effects_encoder(reference_tensor)
|
46 |
+
return reference_feature
|
47 |
+
|
48 |
+
def mastering_style_transfer(self, input_tensor, reference_feature):
|
49 |
+
with torch.no_grad():
|
50 |
+
output_audio = self.mastering_converter(input_tensor, reference_feature)
|
51 |
+
predicted_params = self.mastering_converter.get_last_predicted_params()
|
52 |
+
return output_audio, predicted_params
|
53 |
+
|
54 |
+
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
|
55 |
+
fit_embedding = torch.nn.Parameter(initial_reference_feature)
|
56 |
+
optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])
|
57 |
+
|
58 |
+
af_loss = AudioFeatureLoss(
|
59 |
+
weights=ito_config['af_weights'],
|
60 |
+
sample_rate=ito_config['sample_rate'],
|
61 |
+
stem_separation=False,
|
62 |
+
use_clap=False
|
63 |
+
)
|
64 |
+
|
65 |
+
min_loss = float('inf')
|
66 |
+
min_loss_step = 0
|
67 |
+
min_loss_output = None
|
68 |
+
min_loss_params = None
|
69 |
+
min_loss_embedding = None
|
70 |
+
|
71 |
+
loss_history = []
|
72 |
+
divergence_counter = 0
|
73 |
+
|
74 |
+
for step in range(ito_config['num_steps']):
|
75 |
+
optimizer.zero_grad()
|
76 |
+
|
77 |
+
output_audio = self.mastering_converter(input_tensor, fit_embedding)
|
78 |
+
|
79 |
+
losses = af_loss(output_audio, reference_tensor)
|
80 |
+
total_loss = sum(losses.values())
|
81 |
+
|
82 |
+
loss_history.append(total_loss.item())
|
83 |
+
|
84 |
+
if total_loss < min_loss:
|
85 |
+
min_loss = total_loss.item()
|
86 |
+
min_loss_step = step
|
87 |
+
min_loss_output = output_audio.detach()
|
88 |
+
min_loss_params = self.mastering_converter.get_last_predicted_params()
|
89 |
+
min_loss_embedding = fit_embedding.detach().clone()
|
90 |
+
|
91 |
+
# Check for divergence
|
92 |
+
if len(loss_history) > 10 and total_loss > loss_history[-11]:
|
93 |
+
divergence_counter += 1
|
94 |
+
else:
|
95 |
+
divergence_counter = 0
|
96 |
+
|
97 |
+
print(total_loss, min_loss)
|
98 |
+
|
99 |
+
if divergence_counter >= 10:
|
100 |
+
print(f"Optimization stopped early due to divergence at step {step}")
|
101 |
+
break
|
102 |
+
|
103 |
+
total_loss.backward()
|
104 |
+
optimizer.step()
|
105 |
+
|
106 |
+
return min_loss_output, min_loss_params, min_loss_embedding, min_loss_step + 1
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
def process_audio(self, input_path, reference_path, ito_reference_path, ito_config, perform_ito):
|
111 |
+
input_audio, sr = sf.read(input_path)
|
112 |
+
reference_audio, _ = sf.read(reference_path)
|
113 |
+
ito_reference_audio, _ = sf.read(ito_reference_path)
|
114 |
+
|
115 |
+
input_audio, reference_audio, ito_reference_audio = [
|
116 |
+
np.stack([audio, audio]) if audio.ndim == 1 else audio.transpose(1,0)
|
117 |
+
for audio in [input_audio, reference_audio, ito_reference_audio]
|
118 |
+
]
|
119 |
+
|
120 |
+
input_tensor = torch.FloatTensor(input_audio).unsqueeze(0).to(self.device)
|
121 |
+
reference_tensor = torch.FloatTensor(reference_audio).unsqueeze(0).to(self.device)
|
122 |
+
ito_reference_tensor = torch.FloatTensor(ito_reference_audio).unsqueeze(0).to(self.device)
|
123 |
+
|
124 |
+
reference_feature = self.get_reference_embedding(reference_tensor)
|
125 |
+
|
126 |
+
output_audio, predicted_params = self.mastering_style_transfer(input_tensor, reference_feature)
|
127 |
+
|
128 |
+
if perform_ito:
|
129 |
+
ito_output_audio, ito_predicted_params, optimized_reference_feature, ito_steps = self.inference_time_optimization(
|
130 |
+
input_tensor, ito_reference_tensor, ito_config, reference_feature
|
131 |
+
)
|
132 |
+
|
133 |
+
ito_output_audio = ito_output_audio.squeeze().cpu().numpy()
|
134 |
+
print("\nDifference between initial and ITO predicted parameters:")
|
135 |
+
self.print_param_difference(predicted_params, ito_predicted_params)
|
136 |
+
else:
|
137 |
+
ito_output_audio, ito_predicted_params, optimized_reference_feature, ito_steps = None, None, None, None
|
138 |
+
|
139 |
+
output_audio = output_audio.squeeze().cpu().numpy()
|
140 |
+
|
141 |
+
return output_audio, predicted_params, ito_output_audio, ito_predicted_params, optimized_reference_feature, sr, ito_steps
|
142 |
+
|
143 |
+
def print_param_difference(self, initial_params, ito_params):
|
144 |
+
all_diffs = []
|
145 |
+
|
146 |
+
print("\nAll parameter differences:")
|
147 |
+
for fx_name in initial_params.keys():
|
148 |
+
print(f"\n{fx_name.upper()}:")
|
149 |
+
if isinstance(initial_params[fx_name], dict):
|
150 |
+
for param_name in initial_params[fx_name].keys():
|
151 |
+
initial_value = initial_params[fx_name][param_name]
|
152 |
+
ito_value = ito_params[fx_name][param_name]
|
153 |
+
|
154 |
+
# Calculate normalized difference
|
155 |
+
param_range = self.mastering_converter.fx_processors[fx_name].param_ranges[param_name]
|
156 |
+
normalized_diff = abs((ito_value - initial_value) / (param_range[1] - param_range[0]))
|
157 |
+
|
158 |
+
all_diffs.append((fx_name, param_name, initial_value, ito_value, normalized_diff))
|
159 |
+
|
160 |
+
print(f" {param_name}:")
|
161 |
+
print(f" Initial: {initial_value.item():.4f}")
|
162 |
+
print(f" ITO: {ito_value.item():.4f}")
|
163 |
+
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
164 |
+
else:
|
165 |
+
initial_value = initial_params[fx_name]
|
166 |
+
ito_value = ito_params[fx_name]
|
167 |
+
|
168 |
+
# For 'imager', assume range is 0 to 1
|
169 |
+
normalized_diff = abs(ito_value - initial_value)
|
170 |
+
|
171 |
+
all_diffs.append((fx_name, 'width', initial_value, ito_value, normalized_diff))
|
172 |
+
|
173 |
+
print(f" width:")
|
174 |
+
print(f" Initial: {initial_value.item():.4f}")
|
175 |
+
print(f" ITO: {ito_value.item():.4f}")
|
176 |
+
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
177 |
+
|
178 |
+
# Sort differences by normalized difference and get top 10
|
179 |
+
top_diffs = sorted(all_diffs, key=lambda x: x[4], reverse=True)[:10]
|
180 |
+
|
181 |
+
print("\nTop 10 parameter differences (sorted by normalized difference):")
|
182 |
+
for fx_name, param_name, initial_value, ito_value, normalized_diff in top_diffs:
|
183 |
+
print(f"{fx_name.upper()} - {param_name}:")
|
184 |
+
print(f" Initial: {initial_value.item():.4f}")
|
185 |
+
print(f" ITO: {ito_value.item():.4f}")
|
186 |
+
print(f" Normalized Diff: {normalized_diff.item():.4f}")
|
187 |
+
print()
|
188 |
+
|
189 |
+
def print_predicted_params(self, predicted_params):
|
190 |
+
if predicted_params is None:
|
191 |
+
print("No predicted parameters available.")
|
192 |
+
return
|
193 |
+
|
194 |
+
print("Predicted Parameters:")
|
195 |
+
for fx_name, fx_params in predicted_params.items():
|
196 |
+
print(f"\n{fx_name.upper()}:")
|
197 |
+
if isinstance(fx_params, dict):
|
198 |
+
for param_name, param_value in fx_params.items():
|
199 |
+
if isinstance(param_value, torch.Tensor):
|
200 |
+
param_value = param_value.detach().cpu().numpy()
|
201 |
+
print(f" {param_name}: {param_value}")
|
202 |
+
elif isinstance(fx_params, torch.Tensor):
|
203 |
+
param_value = fx_params.detach().cpu().numpy()
|
204 |
+
print(f" {param_value}")
|
205 |
+
else:
|
206 |
+
print(f" {fx_params}")
|
207 |
+
|
208 |
+
def reload_weights(model, ckpt_path, device):
|
209 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
210 |
+
|
211 |
+
from collections import OrderedDict
|
212 |
+
new_state_dict = OrderedDict()
|
213 |
+
for k, v in checkpoint["model"].items():
|
214 |
+
name = k[7:] # remove `module.`
|
215 |
+
new_state_dict[name] = v
|
216 |
+
model.load_state_dict(new_state_dict, strict=False)
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
basis_path = '/data2/tony/Mastering_Style_Transfer/results/dasp_tcn_tuneenc_daspman_loudnessnorm/ckpt/1000/'
|
220 |
+
|
221 |
+
parser = argparse.ArgumentParser(description="Mastering Style Transfer")
|
222 |
+
parser.add_argument("--input_path", type=str, required=True, help="Path to input audio file")
|
223 |
+
parser.add_argument("--reference_path", type=str, required=True, help="Path to reference audio file")
|
224 |
+
parser.add_argument("--ito_reference_path", type=str, required=True, help="Path to ITO reference audio file")
|
225 |
+
parser.add_argument("--model_path", type=str, default=f"{basis_path}dasp_tcn_tuneenc_daspman_loudnessnorm_mastering_converter_1000.pt", help="Path to mastering converter model")
|
226 |
+
parser.add_argument("--encoder_path", type=str, default=f"{basis_path}dasp_tcn_tuneenc_daspman_loudnessnorm_effects_encoder_1000.pt", help="Path to effects encoder model")
|
227 |
+
parser.add_argument("--perform_ito", action="store_true", help="Whether to perform ITO")
|
228 |
+
parser.add_argument("--optimizer", type=str, default="RAdam", help="Optimizer for ITO")
|
229 |
+
parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate for ITO")
|
230 |
+
parser.add_argument("--num_steps", type=int, default=100, help="Number of optimization steps for ITO")
|
231 |
+
parser.add_argument("--af_weights", nargs='+', type=float, default=[0.1, 0.001, 1.0, 1.0, 0.1], help="Weights for AudioFeatureLoss")
|
232 |
+
parser.add_argument("--sample_rate", type=int, default=44100, help="Sample rate for AudioFeatureLoss")
|
233 |
+
parser.add_argument("--path_to_config", type=str, default='/home/tony/mastering_transfer/networks/configs.yaml', help="Path to network architecture configuration file")
|
234 |
+
|
235 |
+
args = parser.parse_args()
|
236 |
+
|
237 |
+
# load network configurations
|
238 |
+
with open(args.path_to_config, 'r') as f:
|
239 |
+
configs = yaml.full_load(f)
|
240 |
+
args.cfg_converter = configs['TCN']['param_mapping']
|
241 |
+
args.cfg_enc = configs['Effects_Encoder']['default']
|
242 |
+
|
243 |
+
ito_config = {
|
244 |
+
'optimizer': args.optimizer,
|
245 |
+
'learning_rate': args.learning_rate,
|
246 |
+
'num_steps': args.num_steps,
|
247 |
+
'af_weights': args.af_weights,
|
248 |
+
'sample_rate': args.sample_rate
|
249 |
+
}
|
250 |
+
|
251 |
+
mastering_style_transfer = MasteringStyleTransfer(args)
|
252 |
+
output_audio, predicted_params, ito_output_audio, ito_predicted_params, optimized_reference_feature, sr, ito_steps = mastering_style_transfer.process_audio(
|
253 |
+
args.input_path, args.reference_path, args.ito_reference_path, ito_config, args.perform_ito
|
254 |
+
)
|
255 |
+
|
256 |
+
# Save the output audio
|
257 |
+
sf.write("output_mastered.wav", output_audio.T, sr)
|
258 |
+
if ito_output_audio is not None:
|
259 |
+
sf.write("ito_output_mastered.wav", ito_output_audio.T, sr)
|
260 |
+
|
261 |
+
|
262 |
+
|
models/mastering_effects_encoder.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b61b6fa0e5f02ef24597509abde21ea97fcc46758a89f746abfabca48b82758
|
3 |
+
size 325749562
|
models/white_box_converter.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6174cd398d250c5908a289673f53ee3e90e19cc20cffb683f151b28ee6a3294
|
3 |
+
size 42277602
|
networks/configs.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model architecture configurations
|
2 |
+
|
3 |
+
# Music Effects Encoder
|
4 |
+
Effects_Encoder:
|
5 |
+
|
6 |
+
default:
|
7 |
+
channels: [16, 32, 64, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048]
|
8 |
+
kernels: [25, 25, 15, 15, 10, 10, 10, 10, 5, 5, 5, 5]
|
9 |
+
strides: [4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1]
|
10 |
+
dilation: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
11 |
+
bias: True
|
12 |
+
norm: 'batch'
|
13 |
+
conv_block: 'res'
|
14 |
+
activation: "relu"
|
15 |
+
|
16 |
+
# TCN
|
17 |
+
TCN:
|
18 |
+
|
19 |
+
default:
|
20 |
+
condition_dimension: 2048
|
21 |
+
nblocks: 14
|
22 |
+
dilation_growth: 2
|
23 |
+
kernel_size: 15
|
24 |
+
stride: 1
|
25 |
+
channel_width: 128
|
26 |
+
stack_size: 15
|
27 |
+
causal: False
|
28 |
+
|
29 |
+
param_mapping:
|
30 |
+
condition_dimension: 2048
|
31 |
+
nblocks: 14
|
32 |
+
dilation_growth: 2
|
33 |
+
kernel_size: 15
|
34 |
+
stride: 2
|
35 |
+
channel_width: 128
|
36 |
+
stack_size: 15
|
37 |
+
causal: False
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
soundfile
|
4 |
+
numpy
|
5 |
+
pyyaml
|
6 |
+
pytube
|
7 |
+
librosa
|
utils.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytube import YouTube
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def download_youtube_audio(url):
|
6 |
+
yt = YouTube(url)
|
7 |
+
stream = yt.streams.filter(only_audio=True).first()
|
8 |
+
filename = stream.download()
|
9 |
+
audio, sr = librosa.load(filename, sr=44100, mono=False)
|
10 |
+
if audio.ndim == 1:
|
11 |
+
audio = np.stack([audio, audio])
|
12 |
+
return audio.T
|