Spaces:
Sleeping
Sleeping
modify app
Browse files- app.py +29 -18
- inference.py +56 -56
app.py
CHANGED
@@ -10,8 +10,10 @@ from config import args
|
|
10 |
mastering_transfer = MasteringStyleTransfer(args)
|
11 |
|
12 |
def process_audio(input_audio, reference_audio):
|
|
|
|
|
13 |
output_audio, predicted_params, _, _, _, sr = mastering_transfer.process_audio(
|
14 |
-
|
15 |
)
|
16 |
|
17 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
@@ -44,16 +46,19 @@ def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, op
|
|
44 |
|
45 |
return "ito_output_mastered.wav", ito_param_output, steps_taken, ito_log
|
46 |
|
47 |
-
|
48 |
with gr.Blocks() as demo:
|
49 |
gr.Markdown("# Mastering Style Transfer Demo")
|
50 |
|
51 |
with gr.Tab("Upload Audio"):
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
process_button = gr.Button("Process")
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
process_button.click(
|
59 |
process_audio,
|
@@ -62,24 +67,30 @@ with gr.Blocks() as demo:
|
|
62 |
)
|
63 |
|
64 |
gr.Markdown("## Inference Time Optimization (ITO)")
|
65 |
-
ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
|
66 |
-
num_steps = gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Number of Steps")
|
67 |
-
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
|
68 |
-
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
|
69 |
-
af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
78 |
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
79 |
-
ito_output, ito_params, steps_taken = perform_ito(
|
80 |
input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
|
81 |
)
|
82 |
-
return ito_output, ito_params, steps_taken
|
83 |
|
84 |
ito_button.click(
|
85 |
run_ito,
|
|
|
10 |
mastering_transfer = MasteringStyleTransfer(args)
|
11 |
|
12 |
def process_audio(input_audio, reference_audio):
|
13 |
+
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
|
14 |
+
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
|
15 |
output_audio, predicted_params, _, _, _, sr = mastering_transfer.process_audio(
|
16 |
+
input_tensor, reference_tensor, reference_tensor, {}, False
|
17 |
)
|
18 |
|
19 |
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
|
|
46 |
|
47 |
return "ito_output_mastered.wav", ito_param_output, steps_taken, ito_log
|
48 |
|
|
|
49 |
with gr.Blocks() as demo:
|
50 |
gr.Markdown("# Mastering Style Transfer Demo")
|
51 |
|
52 |
with gr.Tab("Upload Audio"):
|
53 |
+
with gr.Row():
|
54 |
+
input_audio = gr.Audio(label="Input Audio")
|
55 |
+
reference_audio = gr.Audio(label="Reference Audio")
|
56 |
+
|
57 |
process_button = gr.Button("Process")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
output_audio = gr.Audio(label="Output Audio")
|
61 |
+
param_output = gr.Textbox(label="Predicted Parameters", lines=10)
|
62 |
|
63 |
process_button.click(
|
64 |
process_audio,
|
|
|
67 |
)
|
68 |
|
69 |
gr.Markdown("## Inference Time Optimization (ITO)")
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column(scale=2):
|
73 |
+
ito_reference_audio = gr.Audio(label="ITO Reference Audio (optional)")
|
74 |
+
num_steps = gr.Slider(minimum=1, maximum=1000, value=100, step=1, label="Number of Steps")
|
75 |
+
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
|
76 |
+
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
|
77 |
+
af_weights = gr.Textbox(label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1")
|
78 |
+
|
79 |
+
ito_button = gr.Button("Perform ITO")
|
80 |
+
|
81 |
+
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
82 |
+
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10)
|
83 |
+
ito_steps_taken = gr.Number(label="ITO Steps Taken")
|
84 |
+
|
85 |
+
with gr.Column(scale=1):
|
86 |
+
ito_log = gr.Textbox(label="ITO Log", lines=30)
|
87 |
|
88 |
def run_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights):
|
89 |
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
90 |
+
ito_output, ito_params, steps_taken, log = perform_ito(
|
91 |
input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights
|
92 |
)
|
93 |
+
return ito_output, ito_params, steps_taken, log
|
94 |
|
95 |
ito_button.click(
|
96 |
run_ito,
|
inference.py
CHANGED
@@ -60,66 +60,66 @@ class MasteringStyleTransfer:
|
|
60 |
predicted_params = self.mastering_converter.get_last_predicted_params()
|
61 |
return output_audio, predicted_params
|
62 |
|
63 |
-
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
|
122 |
-
|
123 |
|
124 |
def preprocess_audio(self, audio, target_sample_rate=44100):
|
125 |
sample_rate, data = audio
|
|
|
60 |
predicted_params = self.mastering_converter.get_last_predicted_params()
|
61 |
return output_audio, predicted_params
|
62 |
|
63 |
+
def inference_time_optimization(self, input_tensor, reference_tensor, ito_config, initial_reference_feature):
|
64 |
+
fit_embedding = torch.nn.Parameter(initial_reference_feature)
|
65 |
+
optimizer = getattr(torch.optim, ito_config['optimizer'])([fit_embedding], lr=ito_config['learning_rate'])
|
66 |
+
|
67 |
+
af_loss = AudioFeatureLoss(
|
68 |
+
weights=ito_config['af_weights'],
|
69 |
+
sample_rate=ito_config['sample_rate'],
|
70 |
+
stem_separation=False,
|
71 |
+
use_clap=False
|
72 |
+
)
|
73 |
+
|
74 |
+
min_loss = float('inf')
|
75 |
+
min_loss_step = 0
|
76 |
+
min_loss_output = None
|
77 |
+
min_loss_params = None
|
78 |
+
min_loss_embedding = None
|
79 |
+
|
80 |
+
loss_history = []
|
81 |
+
divergence_counter = 0
|
82 |
+
ito_log = []
|
83 |
+
|
84 |
+
for step in range(ito_config['num_steps']):
|
85 |
+
optimizer.zero_grad()
|
86 |
+
|
87 |
+
output_audio = self.mastering_converter(input_tensor, fit_embedding)
|
88 |
+
current_params = self.mastering_converter.get_last_predicted_params()
|
89 |
+
|
90 |
+
losses = af_loss(output_audio, reference_tensor)
|
91 |
+
total_loss = sum(losses.values())
|
92 |
+
|
93 |
+
loss_history.append(total_loss.item())
|
94 |
+
|
95 |
+
if total_loss < min_loss:
|
96 |
+
min_loss = total_loss.item()
|
97 |
+
min_loss_step = step
|
98 |
+
min_loss_output = output_audio.detach()
|
99 |
+
min_loss_params = current_params
|
100 |
+
min_loss_embedding = fit_embedding.detach().clone()
|
101 |
+
|
102 |
+
# Check for divergence
|
103 |
+
if len(loss_history) > 10 and total_loss > loss_history[-11]:
|
104 |
+
divergence_counter += 1
|
105 |
+
else:
|
106 |
+
divergence_counter = 0
|
107 |
|
108 |
+
# Log top 10 parameter differences
|
109 |
+
if step == 0:
|
110 |
+
initial_params = current_params
|
111 |
+
top_10_diff = self.get_top_10_diff_string(initial_params, current_params)
|
112 |
+
log_entry = f"Step {step + 1}, Loss: {total_loss.item():.4f}\n{top_10_diff}\n"
|
113 |
+
ito_log.append(log_entry)
|
114 |
|
115 |
+
if divergence_counter >= 10:
|
116 |
+
print(f"Optimization stopped early due to divergence at step {step}")
|
117 |
+
break
|
118 |
|
119 |
+
total_loss.backward()
|
120 |
+
optimizer.step()
|
121 |
|
122 |
+
return min_loss_output, min_loss_params, min_loss_embedding, min_loss_step + 1, "\n".join(ito_log)
|
123 |
|
124 |
def preprocess_audio(self, audio, target_sample_rate=44100):
|
125 |
sample_rate, data = audio
|