import gradio as gr import torch import soundfile as sf import numpy as np from inference import MasteringStyleTransfer from utils import download_youtube_audio from config import config # Initialize MasteringStyleTransfer args = type('Args', (), vars(config))() mastering_transfer = MasteringStyleTransfer(args) # # Initialize MasteringStyleTransfer # args = type('Args', (), { # "model_path": "models/mastering_converter.pt", # "encoder_path": "models/effects_encoder.pt", # "sample_rate": 44100, # "path_to_config": "networks/configs.yaml" # })() # mastering_transfer = MasteringStyleTransfer(args) def process_audio(input_audio, reference_audio, perform_ito): # Process the audio files output_audio, predicted_params, ito_output_audio, ito_predicted_params, _, sr, _ = mastering_transfer.process_audio( input_audio, reference_audio, reference_audio, {}, perform_ito ) # Save the output audio sf.write("output_mastered.wav", output_audio.T, sr) if ito_output_audio is not None: sf.write("ito_output_mastered.wav", ito_output_audio.T, sr) # Generate parameter output strings param_output = mastering_transfer.get_param_output_string(predicted_params) ito_param_output = mastering_transfer.get_param_output_string(ito_predicted_params) if ito_predicted_params is not None else "ITO not performed" # Generate top 10 differences if ITO was performed top_10_diff = mastering_transfer.get_top_10_diff_string(predicted_params, ito_predicted_params) if ito_predicted_params is not None else "ITO not performed" return "output_mastered.wav", "ito_output_mastered.wav" if ito_output_audio is not None else None, param_output, ito_param_output, top_10_diff def process_youtube(input_url, reference_url, perform_ito): input_audio = download_youtube_audio(input_url) reference_audio = download_youtube_audio(reference_url) return process_audio(input_audio, reference_audio, perform_ito) with gr.Blocks() as demo: gr.Markdown("# Mastering Style Transfer Demo") with gr.Tab("Upload Audio"): input_audio = gr.Audio(label="Input Audio") reference_audio = gr.Audio(label="Reference Audio") perform_ito = gr.Checkbox(label="Perform ITO") submit_button = gr.Button("Process") output_audio = gr.Audio(label="Output Audio") ito_output_audio = gr.Audio(label="ITO Output Audio") param_output = gr.Textbox(label="Predicted Parameters", lines=10) ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=10) top_10_diff = gr.Textbox(label="Top 10 Parameter Differences", lines=10) submit_button.click(process_audio, inputs=[input_audio, reference_audio, perform_ito], outputs=[output_audio, ito_output_audio, param_output, ito_param_output, top_10_diff]) with gr.Tab("YouTube URLs"): input_url = gr.Textbox(label="Input YouTube URL") reference_url = gr.Textbox(label="Reference YouTube URL") perform_ito_yt = gr.Checkbox(label="Perform ITO") submit_button_yt = gr.Button("Process") output_audio_yt = gr.Audio(label="Output Audio") ito_output_audio_yt = gr.Audio(label="ITO Output Audio") param_output_yt = gr.Textbox(label="Predicted Parameters", lines=10) ito_param_output_yt = gr.Textbox(label="ITO Predicted Parameters", lines=10) top_10_diff_yt = gr.Textbox(label="Top 10 Parameter Differences", lines=10) submit_button_yt.click(process_youtube, inputs=[input_url, reference_url, perform_ito_yt], outputs=[output_audio_yt, ito_output_audio_yt, param_output_yt, ito_param_output_yt, top_10_diff_yt]) demo.launch()