import os class Config: model_path = "models/mastering_converter.pt" encoder_path = "models/effects_encoder.pt" sample_rate = 44100 path_to_config = "networks/configs.yaml" # Add more configurations as needed inference_only = True evaluate_only = False reload_enc = True reload_converter = True manual_reload_enc = False manual_reload_converter = False manual_reload_name_converter = "dasp_tcn_tuneenc_daspman_loudnessnorm" manual_reload_name_encoder = "dasp_tcn_tuneenc_daspman_loudnessnorm" manual_reload_enc_path = "models/effects_encoder.pt" reload_epoch_converter = 1000 reload_epoch_enc = 1000 # Add other configurations from the main.py file random_seed = 111 train_ito = True max_iter_ito = 101 ito_type = "blackbox" # You can add more configurations as needed config = Config()