import gradio as gr import torch import soundfile as sf import numpy as np import yaml from inference import MasteringStyleTransfer from utils import download_youtube_audio from config import args import pyloudnorm as pyln import tempfile import os import pandas as pd mastering_transfer = MasteringStyleTransfer(args) def denormalize_audio(audio, dtype=np.int16): """ Denormalize the audio from the range [-1, 1] to the full range of the specified dtype. """ if dtype == np.int16: audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1] return (audio * 32767).astype(np.int16) elif dtype == np.float32: return audio.astype(np.float32) else: raise ValueError("Unsupported dtype. Use np.int16 or np.float32.") def loudness_normalize(audio, sample_rate, target_loudness=-12.0): # Ensure audio is float32 if audio.dtype != np.float32: audio = audio.astype(np.float32) # If audio is mono, reshape to (samples, 1) if audio.ndim == 1: audio = audio.reshape(-1, 1) meter = pyln.Meter(sample_rate) # create BS.1770 meter loudness = meter.integrated_loudness(audio) loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness) return loudness_normalized_audio def process_youtube_url(url): try: audio, sr = download_youtube_audio(url) return (sr, audio) except Exception as e: return None, f"Error processing YouTube URL: {str(e)}" def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url): if input_youtube_url: input_audio, error = process_youtube_url(input_youtube_url) if error: return None, None, error if reference_youtube_url: reference_audio, error = process_youtube_url(reference_youtube_url) if error: return None, None, error if input_audio is None or reference_audio is None: return None, None, "Both input and reference audio are required." return process_audio(input_audio, reference_audio) def to_numpy_audio(audio): # Convert output_audio to numpy array if it's a tensor if isinstance(audio, torch.Tensor): audio = audio.cpu().numpy() # check dimension if audio.ndim == 1: audio = audio.reshape(-1, 1) elif audio.ndim > 2: audio = audio.squeeze() # Ensure the audio is in the correct shape (samples, channels) if audio.shape[1] > audio.shape[0]: audio = audio.transpose(1,0) return audio def process_audio(input_audio, reference_audio): output_audio, predicted_params, sr, normalized_input = mastering_transfer.process_audio( input_audio, reference_audio ) param_output = mastering_transfer.get_param_output_string(predicted_params) # Convert to numpy audio output_audio = to_numpy_audio(output_audio) normalized_input = to_numpy_audio(normalized_input) # Normalize output audio output_audio = loudness_normalize(output_audio, sr) # Denormalize the audio to int16 output_audio = denormalize_audio(output_audio, dtype=np.int16) return (sr, output_audio), param_output, (sr, normalized_input) def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn): if ito_reference_audio is None: ito_reference_audio = reference_audio af_weights = [float(w.strip()) for w in af_weights.split(',')] ito_config = { 'optimizer': optimizer, 'learning_rate': learning_rate, 'num_steps': num_steps, 'af_weights': af_weights, 'sample_rate': args.sample_rate, 'loss_function': loss_function, 'clap_target_type': clap_target_type, 'clap_text_prompt': clap_text_prompt, 'clap_distance_fn': clap_distance_fn } input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate) reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate) ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate) initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor) all_results, min_loss_step = mastering_transfer.inference_time_optimization( input_tensor, ito_reference_tensor, ito_config, initial_reference_feature ) ito_log = "" loss_values = [] for result in all_results: ito_log += result['log'] loss_values.append({"step": result['step'], "loss": result['loss']}) # Return the results of the last step last_result = all_results[-1] current_output = last_result['audio'] ito_param_output = mastering_transfer.get_param_output_string(last_result['params']) # Convert to numpy audio current_output = to_numpy_audio(current_output) # Loudness normalize output audio current_output = loudness_normalize(current_output, args.sample_rate) # Denormalize the audio to int16 current_output = denormalize_audio(current_output, dtype=np.int16) return (args.sample_rate, current_output), ito_param_output, num_steps, ito_log, pd.DataFrame(loss_values), all_results def update_ito_output(all_results, selected_step): selected_result = all_results[selected_step - 1] current_output = selected_result['audio'] ito_param_output = mastering_transfer.get_param_output_string(selected_result['params']) # Convert to numpy audio current_output = to_numpy_audio(current_output) # Loudness normalize output audio current_output = loudness_normalize(current_output, args.sample_rate) # Denormalize the audio to int16 current_output = denormalize_audio(current_output, dtype=np.int16) return (args.sample_rate, current_output), ito_param_output, selected_result['log'] # Define the path to the examples folder EXAMPLES_DIR = "examples/" example_files = [f for f in os.listdir(EXAMPLES_DIR) if f.endswith('.mp3')] # Create lists for input and reference examples input_examples = [f"input_{i}.mp3" for i in range(1, len(example_files)//2 + 1)] reference_examples = [f"reference_{i}.mp3" for i in range(1, len(example_files)//2 + 1)] """ APP display """ with gr.Blocks() as demo: gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer") with gr.Row(): gr.Markdown("Interactive demo of Inference Time Optimization (ITO) for Music Mastering Style Transfer. \ The mastering style transfer is performed by a differentiable audio processing model, and the predicted parameters are shown as the output. \ Perform mastering style transfer with an input source audio and a reference mastering style audio. On top of this result, you can perform ITO to optimize the reference embedding $z_{ref}$ to further gain control over the output mastering style.") gr.Image("ito_snow.png", width=100, label="ITO pipeline") gr.Markdown("## Step 1: Mastering Style Transfer") with gr.Tab("Upload Audio"): with gr.Row(): input_audio = gr.Audio(label="Source Audio $x_{in}$") reference_audio = gr.Audio(label="Reference Style Audio $x_{ref}$") # Dropdowns for selecting example files with gr.Row(): input_example_dropdown = gr.Dropdown(label="Select Input Example", choices=input_examples) reference_example_dropdown = gr.Dropdown(label="Select Reference Example", choices=reference_examples) process_button = gr.Button("Process Mastering Style Transfer") gr.Markdown('all output samples are normalized to -12dB') with gr.Row(): with gr.Column(): output_audio = gr.Audio(label="Output Audio y'", type='numpy') normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy') param_output = gr.Textbox(label="Predicted Parameters", lines=5) def process_audio_with_examples(input_audio, reference_audio, input_example, reference_example): if input_example: input_audio = sf.read(os.path.join(EXAMPLES_DIR, input_example))[0] if reference_example: reference_audio = sf.read(os.path.join(EXAMPLES_DIR, reference_example))[0] return process_audio(input_audio, reference_audio) process_button.click( process_audio_with_examples, inputs=[input_audio, reference_audio, input_example_dropdown, reference_example_dropdown], outputs=[output_audio, param_output, normalized_input] ) with gr.Tab("YouTube Audio"): with gr.Row(): input_youtube_url = gr.Textbox(label="Input YouTube URL") reference_youtube_url = gr.Textbox(label="Reference YouTube URL") with gr.Row(): input_audio_yt = gr.Audio(label="Source Audio (Do not put when using YouTube URL)") reference_audio_yt = gr.Audio(label="Reference Style Audio (Do not put when using YouTube URL)") process_button_yt = gr.Button("Process Mastering Style Transfer") gr.Markdown('all output samples are normalized to -12dB') with gr.Row(): output_audio_yt = gr.Audio(label="Output Audio", type='numpy') param_output_yt = gr.Textbox(label="Predicted Parameters", lines=5) error_message_yt = gr.Textbox(label="Error Message", visible=False) def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url): result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url) if len(result) == 3 and isinstance(result[2], str): # Error occurred return None, None, gr.update(visible=True, value=result[2]) return result[0], result[1], gr.update(visible=False, value="") process_button_yt.click( process_and_handle_errors, inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url], outputs=[output_audio_yt, param_output_yt, error_message_yt] ) gr.Markdown("## Step 2: Inference Time Optimization (ITO)") with gr.Row(): ito_reference_audio = gr.Audio(label="ITO Reference Style Audio $x'_{ref}$ (optional)") with gr.Column(): num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps for additional optimization") optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer") learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate") loss_function = gr.Radio(["AudioFeatureLoss", "CLAPFeatureLoss"], label="Loss Function", value="AudioFeatureLoss") # Audio Feature Loss weights with gr.Column(visible=True) as audio_feature_weights: af_weights = gr.Textbox( label="AudioFeatureLoss Weights (comma-separated)", value="0.1,0.001,1.0,1.0,0.1", info="RMS, Crest Factor, Stereo Width, Stereo Imbalance, Bark Spectrum" ) # CLAP Loss options with gr.Column(visible=False) as clap_options: clap_target_type = gr.Radio(["Audio", "Text"], label="CLAP Target Type", value="Audio") clap_text_prompt = gr.Textbox(label="CLAP Text Prompt", visible=False) clap_distance_fn = gr.Dropdown(["cosine", "mse", "l1"], label="CLAP Distance Function", value="cosine") def update_clap_options(loss_function): if loss_function == "CLAPFeatureLoss": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False) loss_function.change( update_clap_options, inputs=[loss_function], outputs=[audio_feature_weights, clap_options] ) def update_clap_text_prompt(clap_target_type): return gr.update(visible=clap_target_type == "Text") clap_target_type.change( update_clap_text_prompt, inputs=[clap_target_type], outputs=[clap_text_prompt] ) ito_button = gr.Button("Perform ITO") gr.Markdown('all output samples are normalized to -12dB') with gr.Row(): with gr.Column(): ito_output_audio = gr.Audio(label="ITO Output Audio") ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True) ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15) with gr.Column(): ito_loss_plot = gr.LinePlot( x="step", y="loss", title="ITO Loss Curve", x_title="Step", y_title="Loss", height=300, width=600, ) ito_log = gr.Textbox(label="ITO Log", lines=10) all_results = gr.State([]) ito_button.click( perform_ito, inputs=[normalized_input, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn], outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results] ).then( update_ito_output, inputs=[all_results, ito_step_slider], outputs=[ito_output_audio, ito_param_output, ito_log] ) ito_step_slider.change( update_ito_output, inputs=[all_results, ito_step_slider], outputs=[ito_output_audio, ito_param_output, ito_log] ) demo.launch()