Spaces:
Paused
Paused
File size: 26,579 Bytes
4f2a492 6ad2dc4 4f2a492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
from controlnet_sync import ControlNetModelSync
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
USE_PEFT_BACKEND,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
# from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from pipeline_utils_sync import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from SyncDreamer.ldm.models.diffusion.sync_dreamer import SyncMultiviewDiffusion, SyncDDIMSampler
from SyncDreamer.ldm.util import prepare_inputs
from tqdm import tqdm
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
... )
>>> image = np.array(image)
>>> # get canny image
>>> image = cv2.Canny(image, 100, 200)
>>> image = image[:, :, None]
>>> image = np.concatenate([image, image, image], axis=2)
>>> canny_image = Image.fromarray(image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> # remove following line if xformers is not installed
>>> pipe.enable_xformers_memory_efficient_attention()
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
... ).images[0]
```
"""
class StableDiffusionControlNetPipeline(
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
):
r"""
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
additional conditioning.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
dreamer: SyncMultiviewDiffusion,
requires_safety_checker: bool = True,
):
super().__init__()
self.register_modules(
controlnet=controlnet,
dreamer = dreamer,
)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
conditioning_image = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
`init`, images must be passed as a list such that each element of the list can be correctly batched for
input to a single ControlNet.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
the corresponding scale as a list.
guess_mode (`bool`, *optional*, defaults to `False`):
The ControlNet encoder tries to recognize the content of the input image even if you remove all
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
The percentage of total steps at which the ControlNet stops applying.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeine class.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
def drop(cond, mask):
shape = cond.shape
B = shape[0]
cond = mask.view(B,*[1 for _ in range(len(shape)-1)]) * cond
return cond
def get_drop_scheme(B, device):
drop_scheme = 'default'
if drop_scheme=='default':
random = torch.rand(B, dtype=torch.float32, device=device)
drop_clip = (random > 0.15) & (random <= 0.2)
drop_volume = (random > 0.1) & (random <= 0.15)
drop_concat = (random > 0.05) & (random <= 0.1)
drop_all = random <= 0.05
else:
raise NotImplementedError
return drop_clip, drop_volume, drop_concat, drop_all
def unet_wrapper_forward(x, t, clip_embed, volume_feats, x_concat, is_train=False):
drop_conditions = False
if drop_conditions and is_train:
B = x.shape[0]
drop_clip, drop_volume, drop_concat, drop_all = get_drop_scheme(B, x.device)
clip_mask = 1.0 - (drop_clip | drop_all).float()
clip_embed = drop(clip_embed, clip_mask)
volume_mask = 1.0 - (drop_volume | drop_all).float()
for k, v in volume_feats.items():
volume_feats[k] = drop(v, mask=volume_mask)
concat_mask = 1.0 - (drop_concat | drop_all).float()
x_concat = drop(x_concat, concat_mask)
use_zero_123 = True
if use_zero_123:
# zero123 does not multiply this when encoding, maybe a bug for zero123
first_stage_scale_factor = 0.18215
x_concat_ = x_concat * 1.0
x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
else:
x_concat_ = x_concat
x = torch.cat([x, x_concat_], 1)
return x, t, clip_embed, volume_feats
def unet_wrapper_forward_unconditional(x, t, clip_embed, volume_feats, x_concat):
"""
@param x: B,4,H,W
@param t: B,
@param clip_embed: B,M,768
@param volume_feats: B,C,D,H,W
@param x_concat: B,C,H,W
@param is_train:
@return:
"""
x_ = torch.cat([x] * 2, 0)
t_ = torch.cat([t] * 2, 0)
clip_embed_ = torch.cat([clip_embed, torch.zeros_like(clip_embed)], 0)
v_ = {}
for k, v in volume_feats.items():
v_[k] = torch.cat([v, torch.zeros_like(v)], 0)
x_concat_ = torch.cat([x_concat, torch.zeros_like(x_concat)], 0)
use_zero_123 = True
if use_zero_123:
# zero123 does not multiply this when encoding, maybe a bug for zero123
first_stage_scale_factor = 0.18215
x_concat_[:, :4] = x_concat_[:, :4] / first_stage_scale_factor
x_ = torch.cat([x_, x_concat_], 1)
return x_, t_, clip_embed_, v_
def repeat_to_batch(tensor, B, VN):
t_shape = tensor.shape
ones = [1 for _ in range(len(t_shape)-1)]
tensor_new = tensor.view(B,1,*t_shape[1:]).repeat(1,VN,*ones).view(B*VN,*t_shape[1:])
return tensor_new
flags_input = conditioning_image
flags_sample_steps = 50
weight_dtype = torch.float32
data = prepare_inputs(flags_input, 30, -1)
for k, v in data.items():
data[k] = v.unsqueeze(0).cuda()
data[k] = torch.repeat_interleave(data[k], repeats=1, dim=0)
sampler = SyncDDIMSampler(self.dreamer, flags_sample_steps)
data["conditioning_pixel_values"] = data['input_image']
_, clip_embed, input_info = self.dreamer.prepare(data)
controlnet_image = data["conditioning_pixel_values"].to(dtype=weight_dtype)
controlnet_image = controlnet_image.permute(0, 3, 1, 2) # B, c, h, w
image_size = 256
latent_size = image_size//8
C, H, W = 4, latent_size, latent_size
B = clip_embed.shape[0]
N = 16
device = 'cuda'
x_target_noisy = torch.randn([B, N, C, H, W], device=device)
timesteps = sampler.ddim_timesteps
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
for i, step in enumerate(iterator):
index = total_steps - i - 1 # index in ddim state
is_step0=index==0
time_steps = torch.full((B,), step, device=device, dtype=torch.long)
x_input, elevation_input = input_info['x'], input_info['elevation']
B, N, C, H, W = x_target_noisy.shape
# construct source data
v_embed = self.dreamer.get_viewpoint_embedding(B, elevation_input) # B,N,v_dim
t_embed = self.dreamer.embed_time(time_steps) # B,t_dim
spatial_volume = self.dreamer.spatial_volume.construct_spatial_volume(x_target_noisy, t_embed, v_embed, self.dreamer.poses, self.dreamer.Ks)
cfg_scale = 2.0
unconditional_scale = cfg_scale
batch_view_num = 4
e_t = []
target_indices = torch.arange(N) # N
for ni in range(0, N, batch_view_num):
x_target_noisy_ = x_target_noisy[:, ni:ni + batch_view_num]
VN = x_target_noisy_.shape[1]
x_target_noisy_ = x_target_noisy_.reshape(B*VN,C,H,W)
time_steps_ = repeat_to_batch(time_steps, B, VN)
target_indices_ = target_indices[ni:ni+batch_view_num].unsqueeze(0).repeat(B,1)
clip_embed_, volume_feats_, x_concat_ = self.dreamer.get_target_view_feats(x_input, spatial_volume, clip_embed, t_embed, v_embed, target_indices_)
if unconditional_scale!=1.0:
x_, t_, clip_embed_, volume_feats_ = unet_wrapper_forward_unconditional(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_)
down_block_res_samples, mid_block_res_sample = controlnet(
x=x_,
timesteps=t_,
controlnet_cond=controlnet_image,
conditioning_scale=1.0,
context=clip_embed_,
return_dict=False,
source_dict=volume_feats_,
)
noise, s_uc = self.dreamer.model.diffusion_model(x_, t_, clip_embed_, down_block_res_samples, mid_block_res_sample, source_dict=volume_feats_).chunk(2)
noise = s_uc + unconditional_scale * (noise - s_uc)
else:
x_noisy_, timesteps, clip_embed, volume_feats = unet_wrapper_forward(x_target_noisy_, time_steps_, clip_embed_, volume_feats_, x_concat_, is_train=False)
down_block_res_samples, mid_block_res_sample = controlnet(
x=x_noisy_,
timesteps=timesteps,
controlnet_cond=controlnet_image,
conditioning_scale=1.0,
context=clip_embed,
return_dict=False,
source_dict=volume_feats,
)
noise = self.dreamer.model.diffusion_model(x_noisy_, timesteps, clip_embed, down_block_res_samples, mid_block_res_sample, source_dict=volume_feats)
e_t.append(noise.view(B,VN,4,H,W))
e_t = torch.cat(e_t, 1)
x_target_noisy = sampler.denoise_apply_impl(x_target_noisy, index, e_t, is_step0)
N = x_target_noisy.shape[1]
x_sample = torch.stack([self.dreamer.decode_first_stage(x_target_noisy[:, ni]) for ni in range(N)], 1)
B, N, _, H, W = x_sample.shape
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
x_sample = x_sample.astype(np.uint8)
return x_sample[0, :, :, :, :]
|