File size: 14,685 Bytes
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2dc4
 
 
 
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import os
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config

from diffusers.loaders import FromOriginalControlnetMixin
from diffusers.utils import BaseOutput, logging
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block
from diffusers.models.unet_2d_condition import UNet2DConditionModel

from diffusers.utils import (
    CONFIG_NAME,
    FLAX_WEIGHTS_NAME,
    MIN_PEFT_VERSION,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    _add_variant,
    _get_model_file,
    check_peft_version,
    deprecate,
    is_accelerate_available,
    is_torch_version,
    logging,
)
from diffusers.utils.hub_utils import PushToHubMixin

from SyncDreamer.ldm.modules.attention import default, zero_module, checkpoint
from SyncDreamer.ldm.modules.diffusionmodules.openaimodel import UNetModel
from SyncDreamer.ldm.modules.diffusionmodules.util import timestep_embedding
from SyncDreamer.ldm.models.diffusion.sync_dreamer_attention import DepthWiseAttention

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

class DepthAttention(nn.Module):
    def __init__(self, query_dim, context_dim, heads, dim_head, output_bias=True):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads
        self.dim_head = dim_head

        self.to_q = nn.Conv2d(query_dim, inner_dim, 1, 1, bias=False)
        self.to_k = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
        self.to_v = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
        if output_bias:
            self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1)
        else:
            self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1, bias=False)

    def forward(self, x, context):
        """

        @param x:        b,f0,h,w
        @param context:  b,f1,d,h,w
        @return:
        """
        hn, hd = self.heads, self.dim_head
        b, _, h, w = x.shape
        b, _, d, h, w = context.shape

        q = self.to_q(x).reshape(b,hn,hd,h,w) # b,t,h,w
        k = self.to_k(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
        v = self.to_v(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w

        sim = torch.sum(q.unsqueeze(3) * k, 2) * self.scale # b,hn,d,h,w
        attn = sim.softmax(dim=2)

        # b,hn,hd,d,h,w * b,hn,1,d,h,w
        out = torch.sum(v * attn.unsqueeze(2), 3) # b,hn,hd,h,w
        out = out.reshape(b,hn*hd,h,w)
        return self.to_out(out)


class DepthTransformer(nn.Module):
    def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=False):
        super().__init__()
        inner_dim = n_heads * d_head
        self.proj_in = nn.Sequential(
            nn.Conv2d(dim, inner_dim, 1, 1),
            nn.GroupNorm(8, inner_dim),
            nn.SiLU(True),
        )
        self.proj_context = nn.Sequential(
            nn.Conv3d(context_dim, context_dim, 1, 1, bias=False), # no bias
            nn.GroupNorm(8, context_dim),
            nn.ReLU(True), # only relu, because we want input is 0, output is 0
        )
        self.depth_attn = DepthAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim, output_bias=False)  # is a self-attention if not self.disable_self_attn
        self.proj_out = nn.Sequential(
            nn.GroupNorm(8, inner_dim),
            nn.ReLU(True),
            nn.Conv2d(inner_dim, inner_dim, 3, 1, 1, bias=False),
            nn.GroupNorm(8, inner_dim),
            nn.ReLU(True),
            zero_module(nn.Conv2d(inner_dim, dim, 3, 1, 1, bias=False)),
        )
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)

    def _forward(self, x, context):
        x_in = x
        x = self.proj_in(x)
        context = self.proj_context(context)
        x = self.depth_attn(x, context)
        x = self.proj_out(x) + x_in
        return x

@dataclass
class ControlNetOutputSync(BaseOutput):
    """
    The output of [`ControlNetModelSync`].

    Args:
        down_block_res_samples (`tuple[torch.Tensor]`):
            A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
            be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
            used to condition the original UNet's downsampling activations.
        mid_down_block_re_sample (`torch.Tensor`):
            The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
            `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
            Output can be used to condition the original UNet's middle block activation.
    """

    down_block_res_samples: Tuple[torch.Tensor]
    mid_block_res_sample: torch.Tensor


class ControlNetConditioningEmbeddingSync(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))

        self.conv_out = zero_module(
            nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class ControlNetModelSync(UNetModel, ModelMixin, ConfigMixin):
    use_fp16 = False
    dtype = torch.float16 if use_fp16 else torch.float32
        
    @register_to_config
    def __init__(
        self,
        volume_dims=[64, 128, 256, 512], 
        image_size=32,
        in_channels=8,
        model_channels=320,
        out_channels=4,
        num_res_blocks=2,
        attention_resolutions=[4, 2, 1],
        channel_mult=[1, 2, 4, 4],
        use_checkpoint=False,
        legacy=False,
        num_heads=8,
        use_spatial_transformer=True,
        transformer_depth=1,
        context_dim=768,
    ):
        
        super().__init__(image_size=image_size, in_channels=in_channels, model_channels=model_channels, out_channels=out_channels, num_res_blocks=num_res_blocks, attention_resolutions=attention_resolutions, channel_mult=channel_mult, use_checkpoint=use_checkpoint, legacy=legacy, num_heads=num_heads, use_spatial_transformer=use_spatial_transformer, transformer_depth=transformer_depth, context_dim=context_dim)
        
        block_out_channels = (320, 640, 1280, 1280)
        conditioning_embedding_out_channels = (16, 32, 96, 256)
        conditioning_channels = 3
        down_block_types = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        )
        layers_per_block = 2
        
        # input
        conv_in_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
            
        d0,d1,d2,d3 = volume_dims

        # 4
        ch = model_channels*channel_mult[2]
        self.middle_conditions = DepthTransformer(ch, 4, d3 // 2, context_dim=d3)

        self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSync(
            conditioning_embedding_channels=self.in_channels,
            block_out_channels=conditioning_embedding_out_channels,
            conditioning_channels=conditioning_channels,
        )
        
        self.controlnet_down_blocks = nn.ModuleList([])
        # down
        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_down_blocks.append(controlnet_block)
        
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            
            for _ in range(layers_per_block):
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)
        
        # mid
        mid_block_channel = block_out_channels[-1]
        
        controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_mid_block = controlnet_block
        
    @classmethod
    def from_unet(
        cls,
        unet: DepthWiseAttention,
        load_weights_from_unet: bool = True,
    ):
        r"""
        Instantiate a [`ControlNetModelSync`] from [`DepthWiseAttention`].

        Parameters:
            unet (`DepthWiseAttention`):
                The UNet model weights to copy to the [`ControlNetModelSync`]. All configuration options are also copied
                where applicable.
        """

        controlnet = cls(
            image_size=32, 
            in_channels=8, 
            model_channels=320, 
            out_channels=4, 
            num_res_blocks=2,
            attention_resolutions=[ 4, 2, 1 ],
            num_heads=8,
            volume_dims=[64, 128, 256, 512],
            channel_mult=[ 1, 2, 4, 4 ],
            use_spatial_transformer=True,
            transformer_depth=1,
            context_dim=768,
            use_checkpoint=False,
            legacy=False,
        )

        if load_weights_from_unet:
            controlnet.time_embed.load_state_dict(unet.time_embed.state_dict())
            controlnet.input_blocks.load_state_dict(unet.input_blocks.state_dict())
            controlnet.middle_block.load_state_dict(unet.middle_block.state_dict())
            controlnet.middle_conditions.load_state_dict(unet.middle_conditions.state_dict())

        return controlnet

    def forward(self, x, timesteps=None, controlnet_cond=None, conditioning_scale=1.0, context=None, return_dict = True, source_dict=None, **kwargs):

        # 1-4. Down and mid blocks, incluidng time embedding
        if len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(x.device)
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)   
        emb = self.time_embed(t_emb)
        controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
        x = x + controlnet_cond 
        h = x.type(self.dtype)
        for index, module in enumerate(self.input_blocks):
            h = module(h, emb, context)
            hs.append(h)
        
        h = self.middle_block(h, emb, context)
        h = self.middle_conditions(h, context=source_dict[h.shape[-1]])

        # 5. Control net blocks
        controlnet_down_block_res_samples = ()
        
        assert len(hs) == len(self.controlnet_down_blocks), "Number of layers in 'hs' should be equal to 'controlnet_down_blocks'"
        
        for down_block_res_sample, controlnet_block in zip(hs, self.controlnet_down_blocks):
            down_block_res_sample = controlnet_block(down_block_res_sample)
            controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(h)

        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return ControlNetOutputSync(
            down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
        )

def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module