File size: 13,104 Bytes
02afb14
 
 
 
 
 
 
 
 
 
6ad2dc4
 
02afb14
 
6ad2dc4
4f2a492
 
 
 
 
 
 
 
 
02afb14
4f2a492
 
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02afb14
4f2a492
7822350
 
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02afb14
 
 
4f2a492
 
 
 
 
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
 
4f2a492
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
 
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2a492
02afb14
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from functools import partial

from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf

from SyncDreamer.ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion
from SyncDreamer.ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave

from SyncDreamer.ldm.util import instantiate_from_config, prepare_inputs
import argparse
import cv2
from transformers import pipeline
from diffusers.utils import load_image, make_image_grid
from diffusers import UniPCMultistepScheduler
from pipeline_controlnet_sync import StableDiffusionControlNetPipeline
from controlnet_sync import ControlNetModelSync

_TITLE = '''ControlNet + SyncDreamer'''
_DESCRIPTION = '''
Given a single-view image and select a target azimuth, ControlNet + SyncDreamer is able to generate the target view

This HF app is modified from [SyncDreamer HF app](https://huggingface.co/spaces/liuyuan-pal/SyncDreamer). The difference is that I added ControlNet on top of SyncDreamer. 
'''
_USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
_USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
_USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"

others = '''**Step 1**. Select "Crop size" and click "Crop it". ==> The foreground object is centered and resized. </br>'''

deployed = True

if deployed:
    print(f"Is CUDA available: {torch.cuda.is_available()}")
    print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")


class BackgroundRemoval:
    def __init__(self, device='cuda'):
        from carvekit.api.high import HiInterface
        self.interface = HiInterface(
            object_type="object",  # Can be "object" or "hairs-like".
            batch_size_seg=5,
            batch_size_matting=1,
            device=device,
            seg_mask_size=640,  # Use 640 for Tracer B7 and 320 for U2Net
            matting_mask_size=2048,
            trimap_prob_threshold=231,
            trimap_dilation=30,
            trimap_erosion_iters=5,
            fp16=True,
        )

    @torch.no_grad()
    def __call__(self, image):
        # image: [H, W, 3] array in [0, 255].
        image = self.interface([image])[0]
        return image

def resize_inputs(image_input, crop_size):
    if image_input is None: return None
    alpha_np = np.asarray(image_input)[:, :, 3]
    coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
    min_x, min_y = np.min(coords, 0)
    max_x, max_y = np.max(coords, 0)
    ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
    h, w = ref_img_.height, ref_img_.width
    scale = crop_size / max(h, w)
    h_, w_ = int(scale * h), int(scale * w)
    ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
    results = add_margin(ref_img_, size=256)
    return results

# def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
#     if deployed:
#         assert isinstance(model, SyncMultiviewDiffusion)
#         seed=int(seed)
#         torch.random.manual_seed(seed)
#         np.random.seed(seed)

#         # prepare data
#         image_input = np.asarray(image_input)
#         image_input = image_input.astype(np.float32) / 255.0
#         alpha_values = image_input[:,:, 3:]
#         image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
#         image_input = image_input[:, :, :3] * 2.0 - 1.0
#         image_input = torch.from_numpy(image_input.astype(np.float32))
#         elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
#         data = {"input_image": image_input, "input_elevation": elevation_input}
#         for k, v in data.items():
#             if deployed:
#                 data[k] = v.unsqueeze(0).cuda()
#             else:
#                 data[k] = v.unsqueeze(0)
#             data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)

#         if deployed:
#             sampler = SyncDDIMSampler(model, sample_steps)
#             x_sample = model.sample(sampler, data, cfg_scale, batch_view_num)
#         else:
#             x_sample = torch.zeros(sample_num, 16, 3, 256, 256)

#         B, N, _, H, W = x_sample.shape
#         x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
#         x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
#         x_sample = x_sample.astype(np.uint8)

#         results = []
#         for bi in range(B):
#             results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
#         results = np.concatenate(results, 0)
#         return Image.fromarray(results)
#     else:
#         return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))

def generate(pipe, image_input, target_index):
    output = pipe(conditioning_image=image_input)
    return output[target_index]

def sam_predict(predictor, removal, raw_im):
    if raw_im is None: return None
    if deployed:
        raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
        image_nobg = removal(raw_im.convert('RGB'))
        arr = np.asarray(image_nobg)[:, :, -1]
        x_nonzero = np.nonzero(arr.sum(axis=0))
        y_nonzero = np.nonzero(arr.sum(axis=1))
        x_min = int(x_nonzero[0].min())
        y_min = int(y_nonzero[0].min())
        x_max = int(x_nonzero[0].max())
        y_max = int(y_nonzero[0].max())
        # image_nobg.save('./nobg.png')

        image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
        image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))

        # imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
        image_sam = np.asarray(image_sam, np.float32) / 255
        out_mask = image_sam[:, :, 3:]
        out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
        out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)

        image_sam = Image.fromarray(out_img, mode='RGBA')
        # image_sam.save('./output.png')
        torch.cuda.empty_cache()
        return image_sam
    else:
        return raw_im

def load_model(cfg,ckpt,strict=True):
    config = OmegaConf.load(cfg)
    model = instantiate_from_config(config.model)
    print(f'loading model from {ckpt} ...')
    ckpt = torch.load(ckpt,map_location='cuda')
    model.load_state_dict(ckpt['state_dict'],strict=strict)
    model = model.cuda().eval()
    return model

def run_demo():
    # # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
    # # models = None # init_model(device, os.path.join(code_dir, ckpt))
    # cfg = 'configs/syncdreamer.yaml'
    # ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
    # config = OmegaConf.load(cfg)
    # # model = None

    if deployed:
        controlnet = ControlNetModelSync.from_pretrained('controlnet_ckpt', torch_dtype=torch.float32, use_safetensors=True)
        cfg = 'SyncDreamer/configs/syncdreamer.yaml'
        dreamer = load_model(cfg, 'SyncDreamer/ckpt/syncdreamer-pretrain.ckpt', strict=True)

        controlnet.to('cuda', dtype=torch.float32)

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            controlnet=controlnet, dreamer=dreamer, torch_dtype=torch.float32, use_safetensors=True
        )
        pipe.to('cuda', dtype=torch.float32)

    # if deployed:
    #     model = instantiate_from_config(config.model)
    #     print(f'loading model from {ckpt} ...')
    #     ckpt = torch.load(ckpt,map_location='cpu')
    #     model.load_state_dict(ckpt['state_dict'], strict=True)
    #     model = model.cuda().eval()
    #     del ckpt
        mask_predictor = sam_init()
        removal = BackgroundRemoval()
    else:
        # model = None
        # mask_predictor = None
        # removal = None
        controlnet = None
        dreamer = None
        pipe = None

    # NOTE: Examples must match inputs
    examples_full = [
        ['hf_demo/examples/monkey.png',30,200],
        ['hf_demo/examples/cat.png',30,200],
        ['hf_demo/examples/crab.png',30,200],
        ['hf_demo/examples/elephant.png',30,200],
        ['hf_demo/examples/flower.png',0,200],
        ['hf_demo/examples/forest.png',30,200],
        ['hf_demo/examples/teapot.png',20,200],
        ['hf_demo/examples/basket.png',30,200],
    ]

    image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
    azimuth = gr.Slider(0, 360, 90, step=22.5, label='Target azimuth', interactive=True)
    crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)

    target_index = round(azimuth % 360 / 22.5)

    # Compose demo layout & data flow.
    with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
            # with gr.Column(scale=0):
            #     gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
        gr.Markdown(_DESCRIPTION)

        with gr.Row(variant='panel'):
            with gr.Column(scale=1.2):
                gr.Examples(
                    examples=examples_full,  # NOTE: elements must match inputs list!
                    inputs=[image_block, azimuth, crop_size],
                    outputs=[image_block, azimuth, crop_size],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=5,
                )

            with gr.Column(scale=0.8):
                image_block.render()
                guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
                fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)


            with gr.Column(scale=0.8):
                sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
                crop_size.render()
                # crop_btn = gr.Button('Crop it', variant='primary', interactive=True)
                fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)

            with gr.Column(scale=0.8):
                input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
                azimuth.render()
                with gr.Accordion('Advanced options', open=False):
                    cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
                    sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
                    sample_steps = gr.Slider(10, 300, 50, step=10, label='Sample steps', interactive=False)
                    batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
                    seed = gr.Number(6033, label='Random seed', interactive=True)
                run_btn = gr.Button('Run generation', variant='primary', interactive=True)


        output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)

        def update_guide2(text, im):
            if im is None:
                return _USER_GUIDE0
            else:
                return text
        update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)

        image_block.clear(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False)
        image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True) \
                   .success(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
                   .success(fn=partial(update_guide2, _USER_GUIDE2), inputs=[image_block], outputs=[guide_text], queue=False)\

        crop_size.change(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
                 .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
        # crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
        #                .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)

        run_btn.click(partial(generate, pipe), inputs=[input_block, target_index], outputs=[output_block], queue=True)\
               .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)

    demo.queue().launch(share=False, max_threads=80)  # auth=("admin", os.environ['PASSWD'])

if __name__=="__main__":
    fire.Fire(run_demo)