Spaces:
Paused
Paused
File size: 20,250 Bytes
4f2a492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import math
import flax.linen as nn
import jax
import jax.numpy as jnp
def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096):
"""Multi-head dot product attention with a limited number of queries."""
num_kv, num_heads, k_features = key.shape[-3:]
v_features = value.shape[-1]
key_chunk_size = min(key_chunk_size, num_kv)
query = query / jnp.sqrt(k_features)
@functools.partial(jax.checkpoint, prevent_cse=False)
def summarize_chunk(query, key, value):
attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision)
max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
max_score = jax.lax.stop_gradient(max_score)
exp_weights = jnp.exp(attn_weights - max_score)
exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision)
max_score = jnp.einsum("...qhk->...qh", max_score)
return (exp_values, exp_weights.sum(axis=-1), max_score)
def chunk_scanner(chunk_idx):
# julienne key array
key_chunk = jax.lax.dynamic_slice(
operand=key,
start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d]
slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d]
)
# julienne value array
value_chunk = jax.lax.dynamic_slice(
operand=value,
start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d]
slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d]
)
return summarize_chunk(query, key_chunk, value_chunk)
chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size))
global_max = jnp.max(chunk_max, axis=0, keepdims=True)
max_diffs = jnp.exp(chunk_max - global_max)
chunk_values *= jnp.expand_dims(max_diffs, axis=-1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(axis=0)
all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0)
return all_values / all_weights
def jax_memory_efficient_attention(
query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096
):
r"""
Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2
https://github.com/AminRezaei0x443/memory-efficient-attention
Args:
query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head)
key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head)
value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head)
precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`):
numerical precision for computation
query_chunk_size (`int`, *optional*, defaults to 1024):
chunk size to divide query array value must divide query_length equally without remainder
key_chunk_size (`int`, *optional*, defaults to 4096):
chunk size to divide key and value array value must divide key_value_length equally without remainder
Returns:
(`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head)
"""
num_q, num_heads, q_features = query.shape[-3:]
def chunk_scanner(chunk_idx, _):
# julienne query array
query_chunk = jax.lax.dynamic_slice(
operand=query,
start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d]
slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d]
)
return (
chunk_idx + query_chunk_size, # unused ignore it
_query_chunk_attention(
query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size
),
)
_, res = jax.lax.scan(
f=chunk_scanner,
init=0,
xs=None,
length=math.ceil(num_q / query_chunk_size), # start counter # stop counter
)
return jnp.concatenate(res, axis=-3) # fuse the chunked result back
class FlaxAttention(nn.Module):
r"""
A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
Parameters:
query_dim (:obj:`int`):
Input hidden states dimension
heads (:obj:`int`, *optional*, defaults to 8):
Number of heads
dim_head (:obj:`int`, *optional*, defaults to 64):
Hidden states dimension inside each head
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
query_dim: int
heads: int = 8
dim_head: int = 64
dropout: float = 0.0
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
inner_dim = self.dim_head * self.heads
self.scale = self.dim_head**-0.5
# Weights were exported with old names {to_q, to_k, to_v, to_out}
self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")
self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
self.dropout_layer = nn.Dropout(rate=self.dropout)
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
return tensor
def __call__(self, hidden_states, context=None, deterministic=True):
context = hidden_states if context is None else context
query_proj = self.query(hidden_states)
key_proj = self.key(context)
value_proj = self.value(context)
if self.split_head_dim:
b = hidden_states.shape[0]
query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head))
key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head))
value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head))
else:
query_states = self.reshape_heads_to_batch_dim(query_proj)
key_states = self.reshape_heads_to_batch_dim(key_proj)
value_states = self.reshape_heads_to_batch_dim(value_proj)
if self.use_memory_efficient_attention:
query_states = query_states.transpose(1, 0, 2)
key_states = key_states.transpose(1, 0, 2)
value_states = value_states.transpose(1, 0, 2)
# this if statement create a chunk size for each layer of the unet
# the chunk size is equal to the query_length dimension of the deepest layer of the unet
flatten_latent_dim = query_states.shape[-3]
if flatten_latent_dim % 64 == 0:
query_chunk_size = int(flatten_latent_dim / 64)
elif flatten_latent_dim % 16 == 0:
query_chunk_size = int(flatten_latent_dim / 16)
elif flatten_latent_dim % 4 == 0:
query_chunk_size = int(flatten_latent_dim / 4)
else:
query_chunk_size = int(flatten_latent_dim)
hidden_states = jax_memory_efficient_attention(
query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
)
hidden_states = hidden_states.transpose(1, 0, 2)
else:
# compute attentions
if self.split_head_dim:
attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states)
else:
attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
attention_scores = attention_scores * self.scale
attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2)
# attend to values
if self.split_head_dim:
hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states)
b = hidden_states.shape[0]
hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head))
else:
hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
hidden_states = self.proj_attn(hidden_states)
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxBasicTransformerBlock(nn.Module):
r"""
A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
https://arxiv.org/abs/1706.03762
Parameters:
dim (:obj:`int`):
Inner hidden states dimension
n_heads (:obj:`int`):
Number of heads
d_head (:obj:`int`):
Hidden states dimension inside each head
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
only_cross_attention (`bool`, defaults to `False`):
Whether to only apply cross attention.
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
dim: int
n_heads: int
d_head: int
dropout: float = 0.0
only_cross_attention: bool = False
dtype: jnp.dtype = jnp.float32
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
def setup(self):
# self attention (or cross_attention if only_cross_attention is True)
self.attn1 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
# cross attention
self.attn2 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, context, deterministic=True):
# self attention
residual = hidden_states
if self.only_cross_attention:
hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
else:
hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
# cross attention
residual = hidden_states
hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
hidden_states = hidden_states + residual
# feed forward
residual = hidden_states
hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxTransformer2DModel(nn.Module):
r"""
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
https://arxiv.org/pdf/1506.02025.pdf
Parameters:
in_channels (:obj:`int`):
Input number of channels
n_heads (:obj:`int`):
Number of heads
d_head (:obj:`int`):
Hidden states dimension inside each head
depth (:obj:`int`, *optional*, defaults to 1):
Number of transformers block
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
use_linear_projection (`bool`, defaults to `False`): tbd
only_cross_attention (`bool`, defaults to `False`): tbd
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
"""
in_channels: int
n_heads: int
d_head: int
depth: int = 1
dropout: float = 0.0
use_linear_projection: bool = False
only_cross_attention: bool = False
dtype: jnp.dtype = jnp.float32
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
def setup(self):
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
inner_dim = self.n_heads * self.d_head
if self.use_linear_projection:
self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_in = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.transformer_blocks = [
FlaxBasicTransformerBlock(
inner_dim,
self.n_heads,
self.d_head,
dropout=self.dropout,
only_cross_attention=self.only_cross_attention,
dtype=self.dtype,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
)
for _ in range(self.depth)
]
if self.use_linear_projection:
self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_out = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, context, deterministic=True):
batch, height, width, channels = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height * width, channels)
hidden_states = self.proj_in(hidden_states)
else:
hidden_states = self.proj_in(hidden_states)
hidden_states = hidden_states.reshape(batch, height * width, channels)
for transformer_block in self.transformer_blocks:
hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)
if self.use_linear_projection:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, channels)
else:
hidden_states = hidden_states.reshape(batch, height, width, channels)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic)
class FlaxFeedForward(nn.Module):
r"""
Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
[`FeedForward`] class, with the following simplifications:
- The activation function is currently hardcoded to a gated linear unit from:
https://arxiv.org/abs/2002.05202
- `dim_out` is equal to `dim`.
- The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
Parameters:
dim (:obj:`int`):
Inner hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
def setup(self):
# The second linear layer needs to be called
# net_2 for now to match the index of the Sequential layer
self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
self.net_2 = nn.Dense(self.dim, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.net_0(hidden_states, deterministic=deterministic)
hidden_states = self.net_2(hidden_states)
return hidden_states
class FlaxGEGLU(nn.Module):
r"""
Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
https://arxiv.org/abs/2002.05202.
Parameters:
dim (:obj:`int`):
Input hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
def setup(self):
inner_dim = self.dim * 4
self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.proj(hidden_states)
hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)
|