File size: 9,842 Bytes
4f2a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright 2023 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch

from ...configuration_utils import ConfigMixin, register_to_config
from ...utils import BaseOutput
from ...utils.torch_utils import randn_tensor
from ..scheduling_utils import SchedulerMixin


@dataclass
class KarrasVeOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        derivative (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Derivative of predicted original image sample (x_0).
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    derivative: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


class KarrasVeScheduler(SchedulerMixin, ConfigMixin):
    """
    A stochastic scheduler tailored to variance-expanding models.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    <Tip>

    For more details on the parameters, see [Appendix E](https://arxiv.org/abs/2206.00364). The grid search values used
    to find the optimal `{s_noise, s_churn, s_min, s_max}` for a specific model are described in Table 5 of the paper.

    </Tip>

    Args:
        sigma_min (`float`, defaults to 0.02):
            The minimum noise magnitude.
        sigma_max (`float`, defaults to 100):
            The maximum noise magnitude.
        s_noise (`float`, defaults to 1.007):
            The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
            1.011].
        s_churn (`float`, defaults to 80):
            The parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100].
        s_min (`float`, defaults to 0.05):
            The start value of the sigma range to add noise (enable stochasticity). A reasonable range is [0, 10].
        s_max (`float`, defaults to 50):
            The end value of the sigma range to add noise. A reasonable range is [0.2, 80].
    """

    order = 2

    @register_to_config
    def __init__(
        self,
        sigma_min: float = 0.02,
        sigma_max: float = 100,
        s_noise: float = 1.007,
        s_churn: float = 80,
        s_min: float = 0.05,
        s_max: float = 50,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

        # setable values
        self.num_inference_steps: int = None
        self.timesteps: np.IntTensor = None
        self.schedule: torch.FloatTensor = None  # sigma(t_i)

    def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps
        timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)
        schedule = [
            (
                self.config.sigma_max**2
                * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
            )
            for i in self.timesteps
        ]
        self.schedule = torch.tensor(schedule, dtype=torch.float32, device=device)

    def add_noise_to_input(
        self, sample: torch.FloatTensor, sigma: float, generator: Optional[torch.Generator] = None
    ) -> Tuple[torch.FloatTensor, float]:
        """
        Explicit Langevin-like "churn" step of adding noise to the sample according to a `gamma_i ≥ 0` to reach a
        higher noise level `sigma_hat = sigma_i + gamma_i*sigma_i`.

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            sigma (`float`):
            generator (`torch.Generator`, *optional*):
                A random number generator.
        """
        if self.config.s_min <= sigma <= self.config.s_max:
            gamma = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1)
        else:
            gamma = 0

        # sample eps ~ N(0, S_noise^2 * I)
        eps = self.config.s_noise * randn_tensor(sample.shape, generator=generator).to(sample.device)
        sigma_hat = sigma + gamma * sigma
        sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)

        return sample_hat, sigma_hat

    def step(
        self,
        model_output: torch.FloatTensor,
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            sigma_hat (`float`):
            sigma_prev (`float`):
            sample_hat (`torch.FloatTensor`):
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_karras_ve.KarrasVESchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.

        """

        pred_original_sample = sample_hat + sigma_hat * model_output
        derivative = (sample_hat - pred_original_sample) / sigma_hat
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )

    def step_correct(
        self,
        model_output: torch.FloatTensor,
        sigma_hat: float,
        sigma_prev: float,
        sample_hat: torch.FloatTensor,
        sample_prev: torch.FloatTensor,
        derivative: torch.FloatTensor,
        return_dict: bool = True,
    ) -> Union[KarrasVeOutput, Tuple]:
        """
        Corrects the predicted sample based on the `model_output` of the network.

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            sigma_hat (`float`): TODO
            sigma_prev (`float`): TODO
            sample_hat (`torch.FloatTensor`): TODO
            sample_prev (`torch.FloatTensor`): TODO
            derivative (`torch.FloatTensor`): TODO
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.

        Returns:
            prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO

        """
        pred_original_sample = sample_prev + sigma_prev * model_output
        derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
        sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)

        if not return_dict:
            return (sample_prev, derivative)

        return KarrasVeOutput(
            prev_sample=sample_prev, derivative=derivative, pred_original_sample=pred_original_sample
        )

    def add_noise(self, original_samples, noise, timesteps):
        raise NotImplementedError()