controlnet / app.py
nekoshadow's picture
Fix slider issue
3a48cd6
raw
history blame
13.1 kB
from functools import partial
from PIL import Image
import numpy as np
import gradio as gr
import torch
import os
import fire
from omegaconf import OmegaConf
from SyncDreamer.ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiffusion
from SyncDreamer.ldm.util import add_margin, instantiate_from_config
from sam_utils import sam_init, sam_out_nosave
from SyncDreamer.ldm.util import instantiate_from_config, prepare_inputs
import argparse
import cv2
from transformers import pipeline
from diffusers.utils import load_image, make_image_grid
from diffusers import UniPCMultistepScheduler
from pipeline_controlnet_sync import StableDiffusionControlNetPipeline
from controlnet_sync import ControlNetModelSync
_TITLE = '''ControlNet + SyncDreamer'''
_DESCRIPTION = '''
Given a single-view image and select a target azimuth, ControlNet + SyncDreamer is able to generate the target view
This HF app is modified from [SyncDreamer HF app](https://huggingface.co/spaces/liuyuan-pal/SyncDreamer). The difference is that I added ControlNet on top of SyncDreamer.
'''
_USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
_USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
_USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"
others = '''**Step 1**. Select "Crop size" and click "Crop it". ==> The foreground object is centered and resized. </br>'''
deployed = True
if deployed:
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
class BackgroundRemoval:
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = self.interface([image])[0]
return image
def resize_inputs(image_input, crop_size):
if image_input is None: return None
alpha_np = np.asarray(image_input)[:, :, 3]
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
min_x, min_y = np.min(coords, 0)
max_x, max_y = np.max(coords, 0)
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
h, w = ref_img_.height, ref_img_.width
scale = crop_size / max(h, w)
h_, w_ = int(scale * h), int(scale * w)
ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
results = add_margin(ref_img_, size=256)
return results
# def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
# if deployed:
# assert isinstance(model, SyncMultiviewDiffusion)
# seed=int(seed)
# torch.random.manual_seed(seed)
# np.random.seed(seed)
# # prepare data
# image_input = np.asarray(image_input)
# image_input = image_input.astype(np.float32) / 255.0
# alpha_values = image_input[:,:, 3:]
# image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
# image_input = image_input[:, :, :3] * 2.0 - 1.0
# image_input = torch.from_numpy(image_input.astype(np.float32))
# elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
# data = {"input_image": image_input, "input_elevation": elevation_input}
# for k, v in data.items():
# if deployed:
# data[k] = v.unsqueeze(0).cuda()
# else:
# data[k] = v.unsqueeze(0)
# data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
# if deployed:
# sampler = SyncDDIMSampler(model, sample_steps)
# x_sample = model.sample(sampler, data, cfg_scale, batch_view_num)
# else:
# x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
# B, N, _, H, W = x_sample.shape
# x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
# x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
# x_sample = x_sample.astype(np.uint8)
# results = []
# for bi in range(B):
# results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
# results = np.concatenate(results, 0)
# return Image.fromarray(results)
# else:
# return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
def generate(pipe, image_input, target_index):
output = pipe(conditioning_image=image_input)
return output[target_index]
def sam_predict(predictor, removal, raw_im):
if raw_im is None: return None
if deployed:
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_nobg = removal(raw_im.convert('RGB'))
arr = np.asarray(image_nobg)[:, :, -1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
# image_nobg.save('./nobg.png')
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
image_sam = np.asarray(image_sam, np.float32) / 255
out_mask = image_sam[:, :, 3:]
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
image_sam = Image.fromarray(out_img, mode='RGBA')
# image_sam.save('./output.png')
torch.cuda.empty_cache()
return image_sam
else:
return raw_im
def load_model(cfg,ckpt,strict=True):
config = OmegaConf.load(cfg)
model = instantiate_from_config(config.model)
print(f'loading model from {ckpt} ...')
ckpt = torch.load(ckpt,map_location='cuda')
model.load_state_dict(ckpt['state_dict'],strict=strict)
model = model.cuda().eval()
return model
def run_demo():
# # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
# # models = None # init_model(device, os.path.join(code_dir, ckpt))
# cfg = 'configs/syncdreamer.yaml'
# ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
# config = OmegaConf.load(cfg)
# # model = None
if deployed:
controlnet = ControlNetModelSync.from_pretrained('controlnet_ckpt', torch_dtype=torch.float32, use_safetensors=True)
cfg = 'SyncDreamer/configs/syncdreamer.yaml'
dreamer = load_model(cfg, 'SyncDreamer/ckpt/syncdreamer-pretrain.ckpt', strict=True)
controlnet.to('cuda', dtype=torch.float32)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
controlnet=controlnet, dreamer=dreamer, torch_dtype=torch.float32, use_safetensors=True
)
pipe.to('cuda', dtype=torch.float32)
# if deployed:
# model = instantiate_from_config(config.model)
# print(f'loading model from {ckpt} ...')
# ckpt = torch.load(ckpt,map_location='cpu')
# model.load_state_dict(ckpt['state_dict'], strict=True)
# model = model.cuda().eval()
# del ckpt
mask_predictor = sam_init()
removal = BackgroundRemoval()
else:
# model = None
# mask_predictor = None
# removal = None
controlnet = None
dreamer = None
pipe = None
# NOTE: Examples must match inputs
examples_full = [
['hf_demo/examples/monkey.png',30,200],
['hf_demo/examples/cat.png',30,200],
['hf_demo/examples/crab.png',30,200],
['hf_demo/examples/elephant.png',30,200],
['hf_demo/examples/flower.png',0,200],
['hf_demo/examples/forest.png',30,200],
['hf_demo/examples/teapot.png',20,200],
['hf_demo/examples/basket.png',30,200],
]
image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
azimuth = gr.Slider(0, 360, 90, step=22.5, label='Target azimuth', interactive=True)
crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
# Compose demo layout & data flow.
with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
# with gr.Column(scale=0):
# gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button')
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1.2):
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
inputs=[image_block, azimuth, crop_size],
outputs=[image_block, azimuth, crop_size],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=5,
)
with gr.Column(scale=0.8):
image_block.render()
guide_text = gr.Markdown(_USER_GUIDE0, visible=True)
fig0 = gr.Image(value=Image.open('assets/crop_size.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
sam_block = gr.Image(type='pil', image_mode='RGBA', label="SAM output", height=256, interactive=False)
crop_size.render()
# crop_btn = gr.Button('Crop it', variant='primary', interactive=True)
fig1 = gr.Image(value=Image.open('assets/elevation.jpg'), type='pil', image_mode='RGB', height=256, show_label=False, tool=None, interactive=False)
with gr.Column(scale=0.8):
input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
azimuth.render()
with gr.Accordion('Advanced options', open=False):
cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
sample_steps = gr.Slider(10, 300, 50, step=10, label='Sample steps', interactive=False)
batch_view_num = gr.Slider(1, 16, 16, step=1, label='Batch num', interactive=True)
seed = gr.Number(6033, label='Random seed', interactive=True)
run_btn = gr.Button('Run generation', variant='primary', interactive=True)
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
def update_guide2(text, im):
if im is None:
return _USER_GUIDE0
else:
return text
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
image_block.clear(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False)
image_block.change(fn=partial(sam_predict, mask_predictor, removal), inputs=[image_block], outputs=[sam_block], queue=True) \
.success(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
.success(fn=partial(update_guide2, _USER_GUIDE2), inputs=[image_block], outputs=[guide_text], queue=False)\
crop_size.change(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=True)\
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
# crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
# .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
azimuth.render()
target_index = round(azimuth % 360 / 22.5)
run_btn.click(partial(generate, pipe), inputs=[input_block, target_index], outputs=[output_block], queue=True)\
.success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
if __name__=="__main__":
fire.Fire(run_demo)