Spaces:
Paused
Paused
# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from ....models import UNet2DModel | |
from ....schedulers import RePaintScheduler | |
from ....utils import PIL_INTERPOLATION, deprecate, logging | |
from ....utils.torch_utils import randn_tensor | |
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): | |
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" | |
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): | |
if isinstance(mask, torch.Tensor): | |
return mask | |
elif isinstance(mask, PIL.Image.Image): | |
mask = [mask] | |
if isinstance(mask[0], PIL.Image.Image): | |
w, h = mask[0].size | |
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 | |
mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] | |
mask = np.concatenate(mask, axis=0) | |
mask = mask.astype(np.float32) / 255.0 | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
elif isinstance(mask[0], torch.Tensor): | |
mask = torch.cat(mask, dim=0) | |
return mask | |
class RePaintPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for image inpainting using RePaint. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Parameters: | |
unet ([`UNet2DModel`]): | |
A `UNet2DModel` to denoise the encoded image latents. | |
scheduler ([`RePaintScheduler`]): | |
A `RePaintScheduler` to be used in combination with `unet` to denoise the encoded image. | |
""" | |
unet: UNet2DModel | |
scheduler: RePaintScheduler | |
model_cpu_offload_seq = "unet" | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
image: Union[torch.Tensor, PIL.Image.Image], | |
mask_image: Union[torch.Tensor, PIL.Image.Image], | |
num_inference_steps: int = 250, | |
eta: float = 0.0, | |
jump_length: int = 10, | |
jump_n_sample: int = 10, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The original image to inpaint on. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The mask_image where 0.0 define which part of the original image to inpaint. | |
num_inference_steps (`int`, *optional*, defaults to 1000): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
eta (`float`): | |
The weight of the added noise in a diffusion step. Its value is between 0.0 and 1.0; 0.0 corresponds to | |
DDIM and 1.0 is the DDPM scheduler. | |
jump_length (`int`, *optional*, defaults to 10): | |
The number of steps taken forward in time before going backward in time for a single jump ("j" in | |
RePaint paper). Take a look at Figure 9 and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). | |
jump_n_sample (`int`, *optional*, defaults to 10): | |
The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 | |
and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
output_type (`str`, `optional`, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. | |
Example: | |
```py | |
>>> from io import BytesIO | |
>>> import torch | |
>>> import PIL | |
>>> import requests | |
>>> from diffusers import RePaintPipeline, RePaintScheduler | |
>>> def download_image(url): | |
... response = requests.get(url) | |
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") | |
>>> img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png" | |
>>> mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" | |
>>> # Load the original image and the mask as PIL images | |
>>> original_image = download_image(img_url).resize((256, 256)) | |
>>> mask_image = download_image(mask_url).resize((256, 256)) | |
>>> # Load the RePaint scheduler and pipeline based on a pretrained DDPM model | |
>>> scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256") | |
>>> pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler) | |
>>> pipe = pipe.to("cuda") | |
>>> generator = torch.Generator(device="cuda").manual_seed(0) | |
>>> output = pipe( | |
... image=original_image, | |
... mask_image=mask_image, | |
... num_inference_steps=250, | |
... eta=0.0, | |
... jump_length=10, | |
... jump_n_sample=10, | |
... generator=generator, | |
... ) | |
>>> inpainted_image = output.images[0] | |
``` | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images. | |
""" | |
original_image = image | |
original_image = _preprocess_image(original_image) | |
original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype) | |
mask_image = _preprocess_mask(mask_image) | |
mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype) | |
batch_size = original_image.shape[0] | |
# sample gaussian noise to begin the loop | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
image_shape = original_image.shape | |
image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device) | |
self.scheduler.eta = eta | |
t_last = self.scheduler.timesteps[0] + 1 | |
generator = generator[0] if isinstance(generator, list) else generator | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
if t < t_last: | |
# predict the noise residual | |
model_output = self.unet(image, t).sample | |
# compute previous image: x_t -> x_t-1 | |
image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample | |
else: | |
# compute the reverse: x_t-1 -> x_t | |
image = self.scheduler.undo_step(image, t_last, generator) | |
t_last = t | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |