Spaces:
Paused
Paused
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer | |
from transformers.activations import ACT2FN | |
from transformers.modeling_outputs import BaseModelOutput | |
from transformers.utils import logging | |
from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel | |
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
class LDMTextToImagePipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using latent diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Parameters: | |
vqvae ([`VQModel`]): | |
Vector-quantized (VQ) model to encode and decode images to and from latent representations. | |
bert ([`LDMBertModel`]): | |
Text-encoder model based on [`~transformers.BERT`]. | |
tokenizer ([`~transformers.BertTokenizer`]): | |
A `BertTokenizer` to tokenize text. | |
unet ([`UNet2DConditionModel`]): | |
A `UNet2DConditionModel` to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
""" | |
model_cpu_offload_seq = "bert->unet->vqvae" | |
def __init__( | |
self, | |
vqvae: Union[VQModel, AutoencoderKL], | |
bert: PreTrainedModel, | |
tokenizer: PreTrainedTokenizer, | |
unet: Union[UNet2DModel, UNet2DConditionModel], | |
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
): | |
super().__init__() | |
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) | |
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 1.0, | |
eta: Optional[float] = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[Tuple, ImagePipelineOutput]: | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 1.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. | |
Example: | |
```py | |
>>> from diffusers import DiffusionPipeline | |
>>> # load model and scheduler | |
>>> ldm = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
>>> # run pipeline in inference (sample random noise and denoise) | |
>>> prompt = "A painting of a squirrel eating a burger" | |
>>> images = ldm([prompt], num_inference_steps=50, eta=0.3, guidance_scale=6).images | |
>>> # save images | |
>>> for idx, image in enumerate(images): | |
... image.save(f"squirrel-{idx}.png") | |
``` | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
# get unconditional embeddings for classifier free guidance | |
if guidance_scale != 1.0: | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=77, truncation=True, return_tensors="pt" | |
) | |
negative_prompt_embeds = self.bert(uncond_input.input_ids.to(self._execution_device))[0] | |
# get prompt text embeddings | |
text_input = self.tokenizer(prompt, padding="max_length", max_length=77, truncation=True, return_tensors="pt") | |
prompt_embeds = self.bert(text_input.input_ids.to(self._execution_device))[0] | |
# get the initial random noise unless the user supplied it | |
latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
latents_shape, generator=generator, device=self._execution_device, dtype=prompt_embeds.dtype | |
) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
latents = latents.to(self._execution_device) | |
self.scheduler.set_timesteps(num_inference_steps) | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_kwargs = {} | |
if accepts_eta: | |
extra_kwargs["eta"] = eta | |
for t in self.progress_bar(self.scheduler.timesteps): | |
if guidance_scale == 1.0: | |
# guidance_scale of 1 means no guidance | |
latents_input = latents | |
context = prompt_embeds | |
else: | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
latents_input = torch.cat([latents] * 2) | |
context = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# predict the noise residual | |
noise_pred = self.unet(latents_input, t, encoder_hidden_states=context).sample | |
# perform guidance | |
if guidance_scale != 1.0: | |
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample | |
# scale and decode the image latents with vae | |
latents = 1 / self.vqvae.config.scaling_factor * latents | |
image = self.vqvae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
################################################################################ | |
# Code for the text transformer model | |
################################################################################ | |
""" PyTorch LDMBERT model.""" | |
logger = logging.get_logger(__name__) | |
LDMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"ldm-bert", | |
# See all LDMBert models at https://huggingface.co/models?filter=ldmbert | |
] | |
LDMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"ldm-bert": "https://huggingface.co/valhalla/ldm-bert/blob/main/config.json", | |
} | |
""" LDMBERT model configuration""" | |
class LDMBertConfig(PretrainedConfig): | |
model_type = "ldmbert" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
def __init__( | |
self, | |
vocab_size=30522, | |
max_position_embeddings=77, | |
encoder_layers=32, | |
encoder_ffn_dim=5120, | |
encoder_attention_heads=8, | |
head_dim=64, | |
encoder_layerdrop=0.0, | |
activation_function="gelu", | |
d_model=1280, | |
dropout=0.1, | |
attention_dropout=0.0, | |
activation_dropout=0.0, | |
init_std=0.02, | |
classifier_dropout=0.0, | |
scale_embedding=False, | |
use_cache=True, | |
pad_token_id=0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.d_model = d_model | |
self.encoder_ffn_dim = encoder_ffn_dim | |
self.encoder_layers = encoder_layers | |
self.encoder_attention_heads = encoder_attention_heads | |
self.head_dim = head_dim | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.init_std = init_std | |
self.encoder_layerdrop = encoder_layerdrop | |
self.classifier_dropout = classifier_dropout | |
self.use_cache = use_cache | |
self.num_hidden_layers = encoder_layers | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
super().__init__(pad_token_id=pad_token_id, **kwargs) | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
""" | |
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | |
""" | |
bsz, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->LDMBert | |
class LDMBertAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
head_dim: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = False, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = head_dim | |
self.inner_dim = head_dim * num_heads | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, self.inner_dim, bias=bias) | |
self.out_proj = nn.Linear(self.inner_dim, embed_dim) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
# get key, value proj | |
if is_cross_attention and past_key_value is not None: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value[0] | |
value_states = past_key_value[1] | |
elif is_cross_attention: | |
# cross_attentions | |
key_states = self._shape(self.k_proj(key_value_states), -1, bsz) | |
value_states = self._shape(self.v_proj(key_value_states), -1, bsz) | |
elif past_key_value is not None: | |
# reuse k, v, self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
else: | |
# self_attention | |
key_states = self._shape(self.k_proj(hidden_states), -1, bsz) | |
value_states = self._shape(self.v_proj(hidden_states), -1, bsz) | |
if self.is_decoder: | |
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. | |
# Further calls to cross_attention layer can then reuse all cross-attention | |
# key/value_states (first "if" case) | |
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of | |
# all previous decoder key/value_states. Further calls to uni-directional self-attention | |
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) | |
# if encoder bi-directional self-attention `past_key_value` is always `None` | |
past_key_value = (key_states, value_states) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
if output_attentions: | |
# this operation is a bit awkward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to be reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.inner_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights_reshaped, past_key_value | |
class LDMBertEncoderLayer(nn.Module): | |
def __init__(self, config: LDMBertConfig): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = LDMBertAttention( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
head_dim=config.head_dim, | |
dropout=config.attention_dropout, | |
) | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: torch.FloatTensor, | |
layer_head_mask: torch.FloatTensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.bart.modeling_bart.BartPretrainedModel with Bart->LDMBert | |
class LDMBertPreTrainedModel(PreTrainedModel): | |
config_class = LDMBertConfig | |
base_model_prefix = "model" | |
_supports_gradient_checkpointing = True | |
_keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"] | |
def _init_weights(self, module): | |
std = self.config.init_std | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (LDMBertEncoder,)): | |
module.gradient_checkpointing = value | |
def dummy_inputs(self): | |
pad_token = self.config.pad_token_id | |
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) | |
dummy_inputs = { | |
"attention_mask": input_ids.ne(pad_token), | |
"input_ids": input_ids, | |
} | |
return dummy_inputs | |
class LDMBertEncoder(LDMBertPreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`LDMBertEncoderLayer`]. | |
Args: | |
config: LDMBertConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config: LDMBertConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
embed_dim = config.d_model | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_position_embeddings | |
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim) | |
self.embed_positions = nn.Embedding(config.max_position_embeddings, embed_dim) | |
self.layers = nn.ModuleList([LDMBertEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
self.layer_norm = nn.LayerNorm(embed_dim) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`BartTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.BaseModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
seq_len = input_shape[1] | |
if position_ids is None: | |
position_ids = torch.arange(seq_len, dtype=torch.long, device=inputs_embeds.device).expand((1, -1)) | |
embed_pos = self.embed_positions(position_ids) | |
hidden_states = inputs_embeds + embed_pos | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
if head_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The head_mask should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class LDMBertModel(LDMBertPreTrainedModel): | |
_no_split_modules = [] | |
def __init__(self, config: LDMBertConfig): | |
super().__init__(config) | |
self.model = LDMBertEncoder(config) | |
self.to_logits = nn.Linear(config.hidden_size, config.vocab_size) | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
position_ids=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
return outputs | |