Spaces:
Paused
Paused
# Copyright 2023 Open AI and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from transformers import CLIPImageProcessor, CLIPVisionModel | |
from ...models import PriorTransformer | |
from ...schedulers import HeunDiscreteScheduler | |
from ...utils import ( | |
BaseOutput, | |
logging, | |
replace_example_docstring, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
from .renderer import ShapERenderer | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> from PIL import Image | |
>>> import torch | |
>>> from diffusers import DiffusionPipeline | |
>>> from diffusers.utils import export_to_gif, load_image | |
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
>>> repo = "openai/shap-e-img2img" | |
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) | |
>>> pipe = pipe.to(device) | |
>>> guidance_scale = 3.0 | |
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" | |
>>> image = load_image(image_url).convert("RGB") | |
>>> images = pipe( | |
... image, | |
... guidance_scale=guidance_scale, | |
... num_inference_steps=64, | |
... frame_size=256, | |
... ).images | |
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif") | |
``` | |
""" | |
class ShapEPipelineOutput(BaseOutput): | |
""" | |
Output class for [`ShapEPipeline`] and [`ShapEImg2ImgPipeline`]. | |
Args: | |
images (`torch.FloatTensor`) | |
A list of images for 3D rendering. | |
""" | |
images: Union[PIL.Image.Image, np.ndarray] | |
class ShapEImg2ImgPipeline(DiffusionPipeline): | |
""" | |
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
prior ([`PriorTransformer`]): | |
The canonincal unCLIP prior to approximate the image embedding from the text embedding. | |
image_encoder ([`~transformers.CLIPVisionModel`]): | |
Frozen image-encoder. | |
image_processor ([`~transformers.CLIPImageProcessor`]): | |
A `CLIPImageProcessor` to process images. | |
scheduler ([`HeunDiscreteScheduler`]): | |
A scheduler to be used in combination with the `prior` model to generate image embedding. | |
shap_e_renderer ([`ShapERenderer`]): | |
Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF | |
rendering method. | |
""" | |
model_cpu_offload_seq = "image_encoder->prior" | |
_exclude_from_cpu_offload = ["shap_e_renderer"] | |
def __init__( | |
self, | |
prior: PriorTransformer, | |
image_encoder: CLIPVisionModel, | |
image_processor: CLIPImageProcessor, | |
scheduler: HeunDiscreteScheduler, | |
shap_e_renderer: ShapERenderer, | |
): | |
super().__init__() | |
self.register_modules( | |
prior=prior, | |
image_encoder=image_encoder, | |
image_processor=image_processor, | |
scheduler=scheduler, | |
shap_e_renderer=shap_e_renderer, | |
) | |
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents | |
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
if latents.shape != shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
latents = latents.to(device) | |
latents = latents * scheduler.init_noise_sigma | |
return latents | |
def _encode_image( | |
self, | |
image, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
): | |
if isinstance(image, List) and isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) | |
if not isinstance(image, torch.Tensor): | |
image = self.image_processor(image, return_tensors="pt").pixel_values[0].unsqueeze(0) | |
image = image.to(dtype=self.image_encoder.dtype, device=device) | |
image_embeds = self.image_encoder(image)["last_hidden_state"] | |
image_embeds = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
negative_image_embeds = torch.zeros_like(image_embeds) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
return image_embeds | |
def __call__( | |
self, | |
image: Union[PIL.Image.Image, List[PIL.Image.Image]], | |
num_images_per_prompt: int = 1, | |
num_inference_steps: int = 25, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
guidance_scale: float = 4.0, | |
frame_size: int = 64, | |
output_type: Optional[str] = "pil", # pil, np, latent, mesh | |
return_dict: bool = True, | |
): | |
""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image` or tensor representing an image batch to be used as the starting point. Can also accept image | |
latents as image, but if passing latents directly it is not encoded again. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
guidance_scale (`float`, *optional*, defaults to 4.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
frame_size (`int`, *optional*, default to 64): | |
The width and height of each image frame of the generated 3D output. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `"pil"` (`PIL.Image.Image`), `"np"` | |
(`np.array`), `"latent"` (`torch.Tensor`), or mesh ([`MeshDecoderOutput`]). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] instead of a plain | |
tuple. | |
Examples: | |
Returns: | |
[`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images. | |
""" | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
elif isinstance(image, torch.Tensor): | |
batch_size = image.shape[0] | |
elif isinstance(image, list) and isinstance(image[0], (torch.Tensor, PIL.Image.Image)): | |
batch_size = len(image) | |
else: | |
raise ValueError( | |
f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(image)}" | |
) | |
device = self._execution_device | |
batch_size = batch_size * num_images_per_prompt | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
image_embeds = self._encode_image(image, device, num_images_per_prompt, do_classifier_free_guidance) | |
# prior | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
num_embeddings = self.prior.config.num_embeddings | |
embedding_dim = self.prior.config.embedding_dim | |
latents = self.prepare_latents( | |
(batch_size, num_embeddings * embedding_dim), | |
image_embeds.dtype, | |
device, | |
generator, | |
latents, | |
self.scheduler, | |
) | |
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim | |
latents = latents.reshape(latents.shape[0], num_embeddings, embedding_dim) | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
noise_pred = self.prior( | |
scaled_model_input, | |
timestep=t, | |
proj_embedding=image_embeds, | |
).predicted_image_embedding | |
# remove the variance | |
noise_pred, _ = noise_pred.split( | |
scaled_model_input.shape[2], dim=2 | |
) # batch_size, num_embeddings, embedding_dim | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) | |
latents = self.scheduler.step( | |
noise_pred, | |
timestep=t, | |
sample=latents, | |
).prev_sample | |
if output_type not in ["np", "pil", "latent", "mesh"]: | |
raise ValueError( | |
f"Only the output types `pil`, `np`, `latent` and `mesh` are supported not output_type={output_type}" | |
) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if output_type == "latent": | |
return ShapEPipelineOutput(images=latents) | |
images = [] | |
if output_type == "mesh": | |
for i, latent in enumerate(latents): | |
mesh = self.shap_e_renderer.decode_to_mesh( | |
latent[None, :], | |
device, | |
) | |
images.append(mesh) | |
else: | |
# np, pil | |
for i, latent in enumerate(latents): | |
image = self.shap_e_renderer.decode_to_image( | |
latent[None, :], | |
device, | |
size=frame_size, | |
) | |
images.append(image) | |
images = torch.stack(images) | |
images = images.cpu().numpy() | |
if output_type == "pil": | |
images = [self.numpy_to_pil(image) for image in images] | |
if not return_dict: | |
return (images,) | |
return ShapEPipelineOutput(images=images) | |