controlnet / diffusers /pipelines /unidiffuser /modeling_text_decoder.py
nekoshadow's picture
Add controlnet
4f2a492
raw
history blame
14.1 kB
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPT2Config, GPT2LMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
# Modified from ClipCaptionModel in https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py
class UniDiffuserTextDecoder(ModelMixin, ConfigMixin, ModuleUtilsMixin):
"""
Text decoder model for a image-text [UniDiffuser](https://arxiv.org/pdf/2303.06555.pdf) model. This is used to
generate text from the UniDiffuser image-text embedding.
Parameters:
prefix_length (`int`):
Max number of prefix tokens that will be supplied to the model.
prefix_inner_dim (`int`):
The hidden size of the incoming prefix embeddings. For UniDiffuser, this would be the hidden dim of the
CLIP text encoder.
prefix_hidden_dim (`int`, *optional*):
Hidden dim of the MLP if we encode the prefix.
vocab_size (`int`, *optional*, defaults to 50257):
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
n_positions (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
n_embd (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
n_layer (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*, defaults to None):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
activation_function (`str`, *optional*, defaults to `"gelu"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_attn_weights (`bool`, *optional*, defaults to `True`):
Scale attention weights by dividing by sqrt(hidden_size)..
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
Whether to additionally scale attention weights by `1 / layer_idx + 1`.
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
dot-product/softmax to float() when training with mixed precision.
"""
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__(
self,
prefix_length: int,
prefix_inner_dim: int,
prefix_hidden_dim: Optional[int] = None,
vocab_size: int = 50257, # Start of GPT2 config args
n_positions: int = 1024,
n_embd: int = 768,
n_layer: int = 12,
n_head: int = 12,
n_inner: Optional[int] = None,
activation_function: str = "gelu_new",
resid_pdrop: float = 0.1,
embd_pdrop: float = 0.1,
attn_pdrop: float = 0.1,
layer_norm_epsilon: float = 1e-5,
initializer_range: float = 0.02,
scale_attn_weights: bool = True,
use_cache: bool = True,
scale_attn_by_inverse_layer_idx: bool = False,
reorder_and_upcast_attn: bool = False,
):
super().__init__()
self.prefix_length = prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and"
f" `n_embd`: {n_embd} are not equal."
)
self.prefix_inner_dim = prefix_inner_dim
self.prefix_hidden_dim = prefix_hidden_dim
self.encode_prefix = (
nn.Linear(self.prefix_inner_dim, self.prefix_hidden_dim)
if self.prefix_hidden_dim is not None
else nn.Identity()
)
self.decode_prefix = (
nn.Linear(self.prefix_hidden_dim, n_embd) if self.prefix_hidden_dim is not None else nn.Identity()
)
gpt_config = GPT2Config(
vocab_size=vocab_size,
n_positions=n_positions,
n_embd=n_embd,
n_layer=n_layer,
n_head=n_head,
n_inner=n_inner,
activation_function=activation_function,
resid_pdrop=resid_pdrop,
embd_pdrop=embd_pdrop,
attn_pdrop=attn_pdrop,
layer_norm_epsilon=layer_norm_epsilon,
initializer_range=initializer_range,
scale_attn_weights=scale_attn_weights,
use_cache=use_cache,
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
reorder_and_upcast_attn=reorder_and_upcast_attn,
)
self.transformer = GPT2LMHeadModel(gpt_config)
def forward(
self,
input_ids: torch.Tensor,
prefix_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
):
"""
Args:
input_ids (`torch.Tensor` of shape `(N, max_seq_len)`):
Text tokens to use for inference.
prefix_embeds (`torch.Tensor` of shape `(N, prefix_length, 768)`):
Prefix embedding to preprend to the embedded tokens.
attention_mask (`torch.Tensor` of shape `(N, prefix_length + max_seq_len, 768)`, *optional*):
Attention mask for the prefix embedding.
labels (`torch.Tensor`, *optional*):
Labels to use for language modeling.
"""
embedding_text = self.transformer.transformer.wte(input_ids)
hidden = self.encode_prefix(prefix_embeds)
prefix_embeds = self.decode_prefix(hidden)
embedding_cat = torch.cat((prefix_embeds, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(input_ids.shape[0], input_ids.device)
labels = torch.cat((dummy_token, input_ids), dim=1)
out = self.transformer(inputs_embeds=embedding_cat, labels=labels, attention_mask=attention_mask)
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def encode(self, prefix):
return self.encode_prefix(prefix)
@torch.no_grad()
def generate_captions(self, features, eos_token_id, device):
"""
Generate captions given text embedding features. Returns list[L].
Args:
features (`torch.Tensor` of shape `(B, L, D)`):
Text embedding features to generate captions from.
eos_token_id (`int`):
The token ID of the EOS token for the text decoder model.
device:
Device to perform text generation on.
Returns:
`List[str]`: A list of strings generated from the decoder model.
"""
features = torch.split(features, 1, dim=0)
generated_tokens = []
generated_seq_lengths = []
for feature in features:
feature = self.decode_prefix(feature.to(device)) # back to the clip feature
# Only support beam search for now
output_tokens, seq_lengths = self.generate_beam(
input_embeds=feature, device=device, eos_token_id=eos_token_id
)
generated_tokens.append(output_tokens[0])
generated_seq_lengths.append(seq_lengths[0])
generated_tokens = torch.stack(generated_tokens)
generated_seq_lengths = torch.stack(generated_seq_lengths)
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def generate_beam(
self,
input_ids=None,
input_embeds=None,
device=None,
beam_size: int = 5,
entry_length: int = 67,
temperature: float = 1.0,
eos_token_id: Optional[int] = None,
):
"""
Generates text using the given tokenizer and text prompt or token embedding via beam search. This
implementation is based on the beam search implementation from the [original UniDiffuser
code](https://github.com/thu-ml/unidiffuser/blob/main/libs/caption_decoder.py#L89).
Args:
eos_token_id (`int`, *optional*):
The token ID of the EOS token for the text decoder model.
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
Tokenizer indices of input sequence tokens in the vocabulary. One of `input_ids` and `input_embeds`
must be supplied.
input_embeds (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
An embedded representation to directly pass to the transformer as a prefix for beam search. One of
`input_ids` and `input_embeds` must be supplied.
device:
The device to perform beam search on.
beam_size (`int`, *optional*, defaults to `5`):
The number of best states to store during beam search.
entry_length (`int`, *optional*, defaults to `67`):
The number of iterations to run beam search.
temperature (`float`, *optional*, defaults to 1.0):
The temperature to use when performing the softmax over logits from the decoding model.
Returns:
`Tuple(torch.Tensor, torch.Tensor)`: A tuple of tensors where the first element is a tensor of generated
token sequences sorted by score in descending order, and the second element is the sequence lengths
corresponding to those sequences.
"""
# Generates text until stop_token is reached using beam search with the desired beam size.
stop_token_index = eos_token_id
tokens = None
scores = None
seq_lengths = torch.ones(beam_size, device=device, dtype=torch.int)
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
if input_embeds is not None:
generated = input_embeds
else:
generated = self.transformer.transformer.wte(input_ids)
for i in range(entry_length):
outputs = self.transformer(inputs_embeds=generated)
logits = outputs.logits
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
logits = logits.softmax(-1).log()
if scores is None:
scores, next_tokens = logits.topk(beam_size, -1)
generated = generated.expand(beam_size, *generated.shape[1:])
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
if tokens is None:
tokens = next_tokens
else:
tokens = tokens.expand(beam_size, *tokens.shape[1:])
tokens = torch.cat((tokens, next_tokens), dim=1)
else:
logits[is_stopped] = -float(np.inf)
logits[is_stopped, 0] = 0
scores_sum = scores[:, None] + logits
seq_lengths[~is_stopped] += 1
scores_sum_average = scores_sum / seq_lengths[:, None]
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
next_tokens_source = next_tokens // scores_sum.shape[1]
seq_lengths = seq_lengths[next_tokens_source]
next_tokens = next_tokens % scores_sum.shape[1]
next_tokens = next_tokens.unsqueeze(1)
tokens = tokens[next_tokens_source]
tokens = torch.cat((tokens, next_tokens), dim=1)
generated = generated[next_tokens_source]
scores = scores_sum_average * seq_lengths
is_stopped = is_stopped[next_tokens_source]
next_token_embed = self.transformer.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
generated = torch.cat((generated, next_token_embed), dim=1)
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
if is_stopped.all():
break
scores = scores / seq_lengths
order = scores.argsort(descending=True)
# tokens tensors are already padded to max_seq_length
output_texts = [tokens[i] for i in order]
output_texts = torch.stack(output_texts, dim=0)
seq_lengths = torch.tensor([seq_lengths[i] for i in order], dtype=seq_lengths.dtype)
return output_texts, seq_lengths