Spaces:
Paused
Paused
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Import utilities: Utilities related to imports and our lazy inits. | |
""" | |
import importlib.util | |
import operator as op | |
import os | |
import sys | |
from collections import OrderedDict | |
from itertools import chain | |
from types import ModuleType | |
from typing import Any, Union | |
from huggingface_hub.utils import is_jinja_available # noqa: F401 | |
from packaging import version | |
from packaging.version import Version, parse | |
from . import logging | |
# The package importlib_metadata is in a different place, depending on the python version. | |
if sys.version_info < (3, 8): | |
import importlib_metadata | |
else: | |
import importlib.metadata as importlib_metadata | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} | |
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) | |
USE_TF = os.environ.get("USE_TF", "AUTO").upper() | |
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() | |
USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper() | |
USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper() | |
DIFFUSERS_SLOW_IMPORT = os.environ.get("DIFFUSERS_SLOW_IMPORT", "FALSE").upper() | |
DIFFUSERS_SLOW_IMPORT = DIFFUSERS_SLOW_IMPORT in ENV_VARS_TRUE_VALUES | |
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} | |
_torch_version = "N/A" | |
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: | |
_torch_available = importlib.util.find_spec("torch") is not None | |
if _torch_available: | |
try: | |
_torch_version = importlib_metadata.version("torch") | |
logger.info(f"PyTorch version {_torch_version} available.") | |
except importlib_metadata.PackageNotFoundError: | |
_torch_available = False | |
else: | |
logger.info("Disabling PyTorch because USE_TORCH is set") | |
_torch_available = False | |
_torch_xla_available = importlib.util.find_spec("torch_xla") is not None | |
if _torch_xla_available: | |
try: | |
_torch_xla_version = importlib_metadata.version("torch_xla") | |
logger.info(f"PyTorch XLA version {_torch_xla_version} available.") | |
except ImportError: | |
_torch_xla_available = False | |
_jax_version = "N/A" | |
_flax_version = "N/A" | |
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: | |
_flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None | |
if _flax_available: | |
try: | |
_jax_version = importlib_metadata.version("jax") | |
_flax_version = importlib_metadata.version("flax") | |
logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.") | |
except importlib_metadata.PackageNotFoundError: | |
_flax_available = False | |
else: | |
_flax_available = False | |
if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES: | |
_safetensors_available = importlib.util.find_spec("safetensors") is not None | |
if _safetensors_available: | |
try: | |
_safetensors_version = importlib_metadata.version("safetensors") | |
logger.info(f"Safetensors version {_safetensors_version} available.") | |
except importlib_metadata.PackageNotFoundError: | |
_safetensors_available = False | |
else: | |
logger.info("Disabling Safetensors because USE_TF is set") | |
_safetensors_available = False | |
_transformers_available = importlib.util.find_spec("transformers") is not None | |
try: | |
_transformers_version = importlib_metadata.version("transformers") | |
logger.debug(f"Successfully imported transformers version {_transformers_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_transformers_available = False | |
_inflect_available = importlib.util.find_spec("inflect") is not None | |
try: | |
_inflect_version = importlib_metadata.version("inflect") | |
logger.debug(f"Successfully imported inflect version {_inflect_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_inflect_available = False | |
_unidecode_available = importlib.util.find_spec("unidecode") is not None | |
try: | |
_unidecode_version = importlib_metadata.version("unidecode") | |
logger.debug(f"Successfully imported unidecode version {_unidecode_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_unidecode_available = False | |
_onnxruntime_version = "N/A" | |
_onnx_available = importlib.util.find_spec("onnxruntime") is not None | |
if _onnx_available: | |
candidates = ( | |
"onnxruntime", | |
"onnxruntime-gpu", | |
"ort_nightly_gpu", | |
"onnxruntime-directml", | |
"onnxruntime-openvino", | |
"ort_nightly_directml", | |
"onnxruntime-rocm", | |
"onnxruntime-training", | |
) | |
_onnxruntime_version = None | |
# For the metadata, we have to look for both onnxruntime and onnxruntime-gpu | |
for pkg in candidates: | |
try: | |
_onnxruntime_version = importlib_metadata.version(pkg) | |
break | |
except importlib_metadata.PackageNotFoundError: | |
pass | |
_onnx_available = _onnxruntime_version is not None | |
if _onnx_available: | |
logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}") | |
# (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed. | |
# _opencv_available = importlib.util.find_spec("opencv-python") is not None | |
try: | |
candidates = ( | |
"opencv-python", | |
"opencv-contrib-python", | |
"opencv-python-headless", | |
"opencv-contrib-python-headless", | |
) | |
_opencv_version = None | |
for pkg in candidates: | |
try: | |
_opencv_version = importlib_metadata.version(pkg) | |
break | |
except importlib_metadata.PackageNotFoundError: | |
pass | |
_opencv_available = _opencv_version is not None | |
if _opencv_available: | |
logger.debug(f"Successfully imported cv2 version {_opencv_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_opencv_available = False | |
_scipy_available = importlib.util.find_spec("scipy") is not None | |
try: | |
_scipy_version = importlib_metadata.version("scipy") | |
logger.debug(f"Successfully imported scipy version {_scipy_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_scipy_available = False | |
_librosa_available = importlib.util.find_spec("librosa") is not None | |
try: | |
_librosa_version = importlib_metadata.version("librosa") | |
logger.debug(f"Successfully imported librosa version {_librosa_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_librosa_available = False | |
_accelerate_available = importlib.util.find_spec("accelerate") is not None | |
try: | |
_accelerate_version = importlib_metadata.version("accelerate") | |
logger.debug(f"Successfully imported accelerate version {_accelerate_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_accelerate_available = False | |
_xformers_available = importlib.util.find_spec("xformers") is not None | |
try: | |
_xformers_version = importlib_metadata.version("xformers") | |
if _torch_available: | |
_torch_version = importlib_metadata.version("torch") | |
if version.Version(_torch_version) < version.Version("1.12"): | |
raise ValueError("xformers is installed in your environment and requires PyTorch >= 1.12") | |
logger.debug(f"Successfully imported xformers version {_xformers_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_xformers_available = False | |
_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None | |
try: | |
_k_diffusion_version = importlib_metadata.version("k_diffusion") | |
logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_k_diffusion_available = False | |
_note_seq_available = importlib.util.find_spec("note_seq") is not None | |
try: | |
_note_seq_version = importlib_metadata.version("note_seq") | |
logger.debug(f"Successfully imported note-seq version {_note_seq_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_note_seq_available = False | |
_wandb_available = importlib.util.find_spec("wandb") is not None | |
try: | |
_wandb_version = importlib_metadata.version("wandb") | |
logger.debug(f"Successfully imported wandb version {_wandb_version }") | |
except importlib_metadata.PackageNotFoundError: | |
_wandb_available = False | |
_omegaconf_available = importlib.util.find_spec("omegaconf") is not None | |
try: | |
_omegaconf_version = importlib_metadata.version("omegaconf") | |
logger.debug(f"Successfully imported omegaconf version {_omegaconf_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_omegaconf_available = False | |
_tensorboard_available = importlib.util.find_spec("tensorboard") | |
try: | |
_tensorboard_version = importlib_metadata.version("tensorboard") | |
logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_tensorboard_available = False | |
_compel_available = importlib.util.find_spec("compel") | |
try: | |
_compel_version = importlib_metadata.version("compel") | |
logger.debug(f"Successfully imported compel version {_compel_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_compel_available = False | |
_ftfy_available = importlib.util.find_spec("ftfy") is not None | |
try: | |
_ftfy_version = importlib_metadata.version("ftfy") | |
logger.debug(f"Successfully imported ftfy version {_ftfy_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_ftfy_available = False | |
_bs4_available = importlib.util.find_spec("bs4") is not None | |
try: | |
# importlib metadata under different name | |
_bs4_version = importlib_metadata.version("beautifulsoup4") | |
logger.debug(f"Successfully imported ftfy version {_bs4_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_bs4_available = False | |
_torchsde_available = importlib.util.find_spec("torchsde") is not None | |
try: | |
_torchsde_version = importlib_metadata.version("torchsde") | |
logger.debug(f"Successfully imported torchsde version {_torchsde_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_torchsde_available = False | |
_invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None | |
try: | |
_invisible_watermark_version = importlib_metadata.version("invisible-watermark") | |
logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_invisible_watermark_available = False | |
_peft_available = importlib.util.find_spec("peft") is not None | |
try: | |
_peft_version = importlib_metadata.version("peft") | |
logger.debug(f"Successfully imported peft version {_peft_version}") | |
except importlib_metadata.PackageNotFoundError: | |
_peft_available = False | |
def is_torch_available(): | |
return _torch_available | |
def is_torch_xla_available(): | |
return _torch_xla_available | |
def is_flax_available(): | |
return _flax_available | |
def is_transformers_available(): | |
return _transformers_available | |
def is_inflect_available(): | |
return _inflect_available | |
def is_unidecode_available(): | |
return _unidecode_available | |
def is_onnx_available(): | |
return _onnx_available | |
def is_opencv_available(): | |
return _opencv_available | |
def is_scipy_available(): | |
return _scipy_available | |
def is_librosa_available(): | |
return _librosa_available | |
def is_xformers_available(): | |
return _xformers_available | |
def is_accelerate_available(): | |
return _accelerate_available | |
def is_k_diffusion_available(): | |
return _k_diffusion_available | |
def is_note_seq_available(): | |
return _note_seq_available | |
def is_wandb_available(): | |
return _wandb_available | |
def is_omegaconf_available(): | |
return _omegaconf_available | |
def is_tensorboard_available(): | |
return _tensorboard_available | |
def is_compel_available(): | |
return _compel_available | |
def is_ftfy_available(): | |
return _ftfy_available | |
def is_bs4_available(): | |
return _bs4_available | |
def is_torchsde_available(): | |
return _torchsde_available | |
def is_invisible_watermark_available(): | |
return _invisible_watermark_available | |
def is_peft_available(): | |
return _peft_available | |
# docstyle-ignore | |
FLAX_IMPORT_ERROR = """ | |
{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the | |
installation page: https://github.com/google/flax and follow the ones that match your environment. | |
""" | |
# docstyle-ignore | |
INFLECT_IMPORT_ERROR = """ | |
{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install | |
inflect` | |
""" | |
# docstyle-ignore | |
PYTORCH_IMPORT_ERROR = """ | |
{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the | |
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment. | |
""" | |
# docstyle-ignore | |
ONNX_IMPORT_ERROR = """ | |
{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip | |
install onnxruntime` | |
""" | |
# docstyle-ignore | |
OPENCV_IMPORT_ERROR = """ | |
{0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip | |
install opencv-python` | |
""" | |
# docstyle-ignore | |
SCIPY_IMPORT_ERROR = """ | |
{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install | |
scipy` | |
""" | |
# docstyle-ignore | |
LIBROSA_IMPORT_ERROR = """ | |
{0} requires the librosa library but it was not found in your environment. Checkout the instructions on the | |
installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment. | |
""" | |
# docstyle-ignore | |
TRANSFORMERS_IMPORT_ERROR = """ | |
{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip | |
install transformers` | |
""" | |
# docstyle-ignore | |
UNIDECODE_IMPORT_ERROR = """ | |
{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install | |
Unidecode` | |
""" | |
# docstyle-ignore | |
K_DIFFUSION_IMPORT_ERROR = """ | |
{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip | |
install k-diffusion` | |
""" | |
# docstyle-ignore | |
NOTE_SEQ_IMPORT_ERROR = """ | |
{0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip | |
install note-seq` | |
""" | |
# docstyle-ignore | |
WANDB_IMPORT_ERROR = """ | |
{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip | |
install wandb` | |
""" | |
# docstyle-ignore | |
OMEGACONF_IMPORT_ERROR = """ | |
{0} requires the omegaconf library but it was not found in your environment. You can install it with pip: `pip | |
install omegaconf` | |
""" | |
# docstyle-ignore | |
TENSORBOARD_IMPORT_ERROR = """ | |
{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip | |
install tensorboard` | |
""" | |
# docstyle-ignore | |
COMPEL_IMPORT_ERROR = """ | |
{0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel` | |
""" | |
# docstyle-ignore | |
BS4_IMPORT_ERROR = """ | |
{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip: | |
`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation. | |
""" | |
# docstyle-ignore | |
FTFY_IMPORT_ERROR = """ | |
{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the | |
installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones | |
that match your environment. Please note that you may need to restart your runtime after installation. | |
""" | |
# docstyle-ignore | |
TORCHSDE_IMPORT_ERROR = """ | |
{0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde` | |
""" | |
# docstyle-ignore | |
INVISIBLE_WATERMARK_IMPORT_ERROR = """ | |
{0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0` | |
""" | |
BACKENDS_MAPPING = OrderedDict( | |
[ | |
("bs4", (is_bs4_available, BS4_IMPORT_ERROR)), | |
("flax", (is_flax_available, FLAX_IMPORT_ERROR)), | |
("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)), | |
("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)), | |
("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)), | |
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)), | |
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)), | |
("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), | |
("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), | |
("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)), | |
("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)), | |
("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)), | |
("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)), | |
("omegaconf", (is_omegaconf_available, OMEGACONF_IMPORT_ERROR)), | |
("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)), | |
("compel", (is_compel_available, COMPEL_IMPORT_ERROR)), | |
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)), | |
("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)), | |
("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)), | |
] | |
) | |
def requires_backends(obj, backends): | |
if not isinstance(backends, (list, tuple)): | |
backends = [backends] | |
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__ | |
checks = (BACKENDS_MAPPING[backend] for backend in backends) | |
failed = [msg.format(name) for available, msg in checks if not available()] | |
if failed: | |
raise ImportError("".join(failed)) | |
if name in [ | |
"VersatileDiffusionTextToImagePipeline", | |
"VersatileDiffusionPipeline", | |
"VersatileDiffusionDualGuidedPipeline", | |
"StableDiffusionImageVariationPipeline", | |
"UnCLIPPipeline", | |
] and is_transformers_version("<", "4.25.0"): | |
raise ImportError( | |
f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install" | |
" --upgrade transformers \n```" | |
) | |
if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version( | |
"<", "4.26.0" | |
): | |
raise ImportError( | |
f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install" | |
" --upgrade transformers \n```" | |
) | |
class DummyObject(type): | |
""" | |
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by | |
`requires_backend` each time a user tries to access any method of that class. | |
""" | |
def __getattr__(cls, key): | |
if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]: | |
return super().__getattr__(cls, key) | |
requires_backends(cls, cls._backends) | |
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319 | |
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str): | |
""" | |
Args: | |
Compares a library version to some requirement using a given operation. | |
library_or_version (`str` or `packaging.version.Version`): | |
A library name or a version to check. | |
operation (`str`): | |
A string representation of an operator, such as `">"` or `"<="`. | |
requirement_version (`str`): | |
The version to compare the library version against | |
""" | |
if operation not in STR_OPERATION_TO_FUNC.keys(): | |
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}") | |
operation = STR_OPERATION_TO_FUNC[operation] | |
if isinstance(library_or_version, str): | |
library_or_version = parse(importlib_metadata.version(library_or_version)) | |
return operation(library_or_version, parse(requirement_version)) | |
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338 | |
def is_torch_version(operation: str, version: str): | |
""" | |
Args: | |
Compares the current PyTorch version to a given reference with an operation. | |
operation (`str`): | |
A string representation of an operator, such as `">"` or `"<="` | |
version (`str`): | |
A string version of PyTorch | |
""" | |
return compare_versions(parse(_torch_version), operation, version) | |
def is_transformers_version(operation: str, version: str): | |
""" | |
Args: | |
Compares the current Transformers version to a given reference with an operation. | |
operation (`str`): | |
A string representation of an operator, such as `">"` or `"<="` | |
version (`str`): | |
A version string | |
""" | |
if not _transformers_available: | |
return False | |
return compare_versions(parse(_transformers_version), operation, version) | |
def is_accelerate_version(operation: str, version: str): | |
""" | |
Args: | |
Compares the current Accelerate version to a given reference with an operation. | |
operation (`str`): | |
A string representation of an operator, such as `">"` or `"<="` | |
version (`str`): | |
A version string | |
""" | |
if not _accelerate_available: | |
return False | |
return compare_versions(parse(_accelerate_version), operation, version) | |
def is_k_diffusion_version(operation: str, version: str): | |
""" | |
Args: | |
Compares the current k-diffusion version to a given reference with an operation. | |
operation (`str`): | |
A string representation of an operator, such as `">"` or `"<="` | |
version (`str`): | |
A version string | |
""" | |
if not _k_diffusion_available: | |
return False | |
return compare_versions(parse(_k_diffusion_version), operation, version) | |
def get_objects_from_module(module): | |
""" | |
Args: | |
Returns a dict of object names and values in a module, while skipping private/internal objects | |
module (ModuleType): | |
Module to extract the objects from. | |
Returns: | |
dict: Dictionary of object names and corresponding values | |
""" | |
objects = {} | |
for name in dir(module): | |
if name.startswith("_"): | |
continue | |
objects[name] = getattr(module, name) | |
return objects | |
class OptionalDependencyNotAvailable(BaseException): | |
"""An error indicating that an optional dependency of Diffusers was not found in the environment.""" | |
class _LazyModule(ModuleType): | |
""" | |
Module class that surfaces all objects but only performs associated imports when the objects are requested. | |
""" | |
# Very heavily inspired by optuna.integration._IntegrationModule | |
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py | |
def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None): | |
super().__init__(name) | |
self._modules = set(import_structure.keys()) | |
self._class_to_module = {} | |
for key, values in import_structure.items(): | |
for value in values: | |
self._class_to_module[value] = key | |
# Needed for autocompletion in an IDE | |
self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values())) | |
self.__file__ = module_file | |
self.__spec__ = module_spec | |
self.__path__ = [os.path.dirname(module_file)] | |
self._objects = {} if extra_objects is None else extra_objects | |
self._name = name | |
self._import_structure = import_structure | |
# Needed for autocompletion in an IDE | |
def __dir__(self): | |
result = super().__dir__() | |
# The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether | |
# they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir. | |
for attr in self.__all__: | |
if attr not in result: | |
result.append(attr) | |
return result | |
def __getattr__(self, name: str) -> Any: | |
if name in self._objects: | |
return self._objects[name] | |
if name in self._modules: | |
value = self._get_module(name) | |
elif name in self._class_to_module.keys(): | |
module = self._get_module(self._class_to_module[name]) | |
value = getattr(module, name) | |
else: | |
raise AttributeError(f"module {self.__name__} has no attribute {name}") | |
setattr(self, name, value) | |
return value | |
def _get_module(self, module_name: str): | |
try: | |
return importlib.import_module("." + module_name, self.__name__) | |
except Exception as e: | |
raise RuntimeError( | |
f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its" | |
f" traceback):\n{e}" | |
) from e | |
def __reduce__(self): | |
return (self.__class__, (self._name, self.__file__, self._import_structure)) | |