File size: 2,880 Bytes
730c100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7599a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730c100
7599a23
 
730c100
7599a23
 
 
 
 
 
 
 
 
 
 
 
730c100
 
7599a23
 
730c100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import cv2
import requests
import os
 
from ultralytics import YOLO
 
file_urls = [
    'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
    'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
    'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
]
 
def download_file(url, save_name):
    url = url
    if not os.path.exists(save_name):
        file = requests.get(url)
        open(save_name, 'wb').write(file.content)
 
for i, url in enumerate(file_urls):
    if 'mp4' in file_urls[i]:
        download_file(
            file_urls[i],
            f"video.mp4"
        )
    else:
        download_file(
            file_urls[i],
            f"image_{i}.jpg"
        )

model = YOLO('best.pt')
path  = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]

def show_preds_image(image_path):
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path)
    results = outputs[0].cpu().numpy()
    for i, det in enumerate(results.boxes.xyxy):
        cv2.rectangle(
            image,
            (int(det[0]), int(det[1])),
            (int(det[2]), int(det[3])),
            color=(0, 0, 255),
            thickness=2,
            lineType=cv2.LINE_AA
        )
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
    fn=show_preds_image,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Pothole detector",
    examples=path,
    cache_examples=False,
)

# def show_preds_video(video_path):
#     cap = cv2.VideoCapture(video_path)
#     while(cap.isOpened()):
#         ret, frame = cap.read()
#         if ret:
#             frame_copy = frame.copy()
#             outputs = model.predict(source=frame)
#             results = outputs[0].cpu().numpy()
#             for i, det in enumerate(results.boxes.xyxy):
#                 cv2.rectangle(
#                     frame_copy,
#                     (int(det[0]), int(det[1])),
#                     (int(det[2]), int(det[3])),
#                     color=(0, 0, 255),
#                     thickness=2,
#                     lineType=cv2.LINE_AA
#                 )
#             yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
 
# inputs_video = [
#     gr.components.Video(type="filepath", label="Input Video"),
 
# ]
# outputs_video = [
#     gr.components.Image(type="numpy", label="Output Image"),
# ]
# interface_video = gr.Interface(
#     fn=show_preds_video,
#     inputs=inputs_video,
#     outputs=outputs_video,
#     title="Pothole detector",
#     examples=video_path,
#     cache_examples=False,
# )

gr.TabbedInterface(
    [interface_image],
    tab_names=['Image inference']
).queue().launch()