jiangjiechen commited on
Commit
8acb22e
·
1 Parent(s): fbb1938
.gitignore ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by .ignore support plugin (hsz.mobi)
2
+ ### macOS template
3
+ # General
4
+ .DS_Store
5
+ .AppleDouble
6
+ .LSOverride
7
+
8
+ # Icon must end with two \r
9
+ Icon
10
+
11
+ # Thumbnails
12
+ ._*
13
+
14
+ # Files that might appear in the root of a volume
15
+ .DocumentRevisions-V100
16
+ .fseventsd
17
+ .Spotlight-V100
18
+ .TemporaryItems
19
+ .Trashes
20
+ .VolumeIcon.icns
21
+ .com.apple.timemachine.donotpresent
22
+
23
+ # Directories potentially created on remote AFP share
24
+ .AppleDB
25
+ .AppleDesktop
26
+ Network Trash Folder
27
+ Temporary Items
28
+ .apdisk
29
+ ### Python template
30
+ # Byte-compiled / optimized / DLL files
31
+ __pycache__/
32
+ *.py[cod]
33
+ *$py.class
34
+
35
+ # C extensions
36
+ *.so
37
+
38
+ # Distribution / packaging
39
+ .Python
40
+ build/
41
+ develop-eggs/
42
+ dist/
43
+ downloads/
44
+ eggs/
45
+ .eggs/
46
+ lib/
47
+ lib64/
48
+ parts/
49
+ sdist/
50
+ var/
51
+ wheels/
52
+ *.egg-info/
53
+ .installed.cfg
54
+ *.egg
55
+ MANIFEST
56
+
57
+ # PyInstaller
58
+ # Usually these files are written by a python script from a template
59
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
60
+ *.manifest
61
+ *.spec
62
+
63
+ # Installer logs
64
+ pip-log.txt
65
+ pip-delete-this-directory.txt
66
+
67
+ # Unit test / coverage reports
68
+ htmlcov/
69
+ .tox/
70
+ .coverage
71
+ .coverage.*
72
+ .cache
73
+ nosetests.xml
74
+ coverage.xml
75
+ *.cover
76
+ .hypothesis/
77
+ .pytest_cache/
78
+
79
+ # Translations
80
+ *.mo
81
+ *.pot
82
+
83
+ # Django stuff:
84
+ *.log
85
+ local_settings.py
86
+ db.sqlite3
87
+
88
+ # Flask stuff:
89
+ instance/
90
+ .webassets-cache
91
+
92
+ # Scrapy stuff:
93
+ .scrapy
94
+
95
+ # Sphinx documentation
96
+ docs/_build/
97
+
98
+ # PyBuilder
99
+ target/
100
+
101
+ # Jupyter Notebook
102
+ .ipynb_checkpoints
103
+
104
+ # pyenv
105
+ .python-version
106
+
107
+ # celery beat schedule file
108
+ celerybeat-schedule
109
+
110
+ # SageMath parsed files
111
+ *.sage.py
112
+
113
+ # Environments
114
+ .env
115
+ .venv
116
+ env/
117
+ venv/
118
+ ENV/
119
+ env.bak/
120
+ venv.bak/
121
+
122
+ # Spyder project settings
123
+ .spyderproject
124
+ .spyproject
125
+
126
+ # Rope project settings
127
+ .ropeproject
128
+
129
+ # mkdocs documentation
130
+ /site
131
+
132
+ # mypy
133
+ .mypy_cache/
134
+ ### JetBrains template
135
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
136
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
137
+
138
+ # User-specific stuff
139
+ .idea/**/workspace.xml
140
+ .idea/**/tasks.xml
141
+ .idea/**/usage.statistics.xml
142
+ .idea/**/dictionaries
143
+ .idea/**/shelf
144
+
145
+ # Sensitive or high-churn files
146
+ .idea/**/dataSources/
147
+ .idea/**/dataSources.ids
148
+ .idea/**/dataSources.local.xml
149
+ .idea/**/sqlDataSources.xml
150
+ .idea/**/dynamic.xml
151
+ .idea/**/uiDesigner.xml
152
+ .idea/**/dbnavigator.xml
153
+
154
+ # Gradle
155
+ .idea/**/gradle.xml
156
+ .idea/**/libraries
157
+
158
+ # Gradle and Maven with auto-import
159
+ # When using Gradle or Maven with auto-import, you should exclude module files,
160
+ # since they will be recreated, and may cause churn. Uncomment if using
161
+ # auto-import.
162
+ # .idea/modules.xml
163
+ # .idea/*.iml
164
+ # .idea/modules
165
+
166
+ # CMake
167
+ cmake-build-*/
168
+
169
+ # Mongo Explorer plugin
170
+ .idea/**/mongoSettings.xml
171
+
172
+ # File-based project format
173
+ *.iws
174
+
175
+ # IntelliJ
176
+ out/
177
+
178
+ # mpeltonen/sbt-idea plugin
179
+ .idea_modules/
180
+
181
+ # JIRA plugin
182
+ atlassian-ide-plugin.xml
183
+
184
+ # Cursive Clojure plugin
185
+ .idea/replstate.xml
186
+
187
+ # Crashlytics plugin (for Android Studio and IntelliJ)
188
+ com_crashlytics_export_strings.xml
189
+ crashlytics.properties
190
+ crashlytics-build.properties
191
+ fabric.properties
192
+
193
+ # Editor-based Rest Client
194
+ .idea/httpRequests
195
+ ### VirtualEnv template
196
+ # Virtualenv
197
+ # http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
198
+ .Python
199
+ [Bb]in
200
+ [Ii]nclude
201
+ [Ll]ib
202
+ [Ll]ib64
203
+ [Ll]ocal
204
+ pyvenv.cfg
205
+ .venv
206
+ pip-selfcheck.json
207
+
208
+ .idea/
209
+ eden.py
210
+ backup/
211
+ raw/
212
+ runs
213
+ *nohup*
214
+ *.pt
215
+ *.out
216
+ /nlgeval/
217
+ *.pkl
218
+ *.db
219
+ /cache/
220
+ _archived/
221
+ output/
222
+ models/
223
+ *_proc
224
+ lightning_logs/
225
+ wandb/
226
+ .lock
227
+ cjjpy.py
228
+ logs/
229
+ exp/
230
+ *.ipynb
231
+ docs/
232
+ .bashrc
233
+ google-cloud-sdk/
234
+ scripts
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
app.py ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from app_modules.presets import *
4
+ from app_modules.overwrites import *
5
+ from app_modules.utils import *
6
+ from src.item_base import create_items
7
+ from src.bidder_base import Bidder
8
+ from src.human_bidder import HumanBidder
9
+ from src.auctioneer_base import Auctioneer
10
+ from auction_workflow import run_auction, make_auction_hash
11
+ from utils import chunks, reset_state_list
12
+
13
+
14
+ BIDDER_NUM = 4
15
+ items = create_items('data/items_demo.jsonl')
16
+
17
+ def auction_loop_app(*args):
18
+ global items
19
+
20
+ bidder_list = args[0] # gr.State() -> session state
21
+ items_id = args[1]
22
+ os.environ['OPENAI_API_KEY'] = args[2] if args[2] != '' else os.environ.get('OPENAI_API_KEY', '')
23
+ os.environ['ANTHROPIC_API_KEY'] = args[3] if args[3] != '' else os.environ.get('ANTHROPIC_API_KEY', '')
24
+ thread_num = args[4]
25
+ item_shuffle = args[5]
26
+ enable_discount = args[6]
27
+ min_markup_pct = args[7]
28
+ args = args[8:]
29
+ auction_hash = make_auction_hash()
30
+
31
+ items_to_bid = [items[i] for i in items_id]
32
+
33
+ auctioneer = Auctioneer(enable_discount=enable_discount, min_markup_pct=min_markup_pct)
34
+ auctioneer.init_items(items_to_bid)
35
+ if item_shuffle:
36
+ auctioneer.shuffle_items()
37
+
38
+ # must correspond to the order in app's parameters
39
+ input_keys = [
40
+ 'chatbot',
41
+ 'model_name',
42
+ 'desire',
43
+ 'plan_strategy',
44
+ 'budget',
45
+ 'correct_belief',
46
+ 'enable_learning',
47
+ 'temperature',
48
+ 'overestimate_percent',
49
+ ]
50
+
51
+ # convert flatten list into a json list
52
+ input_jsl = []
53
+ for i, chunk in enumerate(chunks(args, len(input_keys))):
54
+ js = {'name': f"Bidder {i+1}", 'auction_hash': auction_hash}
55
+ for k, v in zip(input_keys, chunk):
56
+ js[k] = v
57
+ input_jsl.append(js)
58
+
59
+ for js in input_jsl:
60
+ js.pop('chatbot')
61
+ if 'human' in js['model_name']:
62
+ bidder_list.append(HumanBidder.create(**js))
63
+ else:
64
+ bidder_list.append(Bidder.create(**js))
65
+
66
+ yield from run_auction(auction_hash, auctioneer, bidder_list, thread_num, yield_for_demo=True)
67
+
68
+
69
+ with open("assets/custom.css", "r", encoding="utf-8") as f:
70
+ customCSS = f.read()
71
+
72
+ with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo:
73
+ with gr.Row():
74
+ gr.HTML(title)
75
+
76
+ gr.Markdown(description_top)
77
+
78
+ with gr.Row():
79
+ with gr.Column(scale=6):
80
+ # item_file = gr.File(label="Upload Item File", file_types=[".jsonl"])
81
+ items_checkbox = gr.CheckboxGroup(
82
+ choices=[item.info() for item in items[:20]],
83
+ label="Items in Auction",
84
+ info="Select the items you want to include in the auction.",
85
+ value=[item.info() for item in items[:8]],
86
+ type="index",
87
+ )
88
+
89
+ with gr.Column(scale=4):
90
+ with gr.Row():
91
+ openai_key = gr.Textbox(label="OpenAI API Key", value="", type="password", placeholder="sk-..")
92
+ anthropic_key = gr.Textbox(label="Anthropic API Key", value="", type="password", placeholder="sk-ant-..")
93
+
94
+ with gr.Row():
95
+ with gr.Row():
96
+ item_shuffle = gr.Checkbox(
97
+ label="Shuffle Items",
98
+ value=False,
99
+ info='Shuffle the order of items in the auction.')
100
+ enable_discount = gr.Checkbox(
101
+ label="Enable Discount",
102
+ value=False,
103
+ info='When an item fails to sell at auction, it can be auctioned again at a reduced price.')
104
+
105
+ with gr.Column():
106
+ min_markup_pct = gr.Slider(
107
+ minimum=0.1,
108
+ maximum=0.5,
109
+ value=0.1,
110
+ step=0.1,
111
+ interactive=True,
112
+ label='Min Increase',
113
+ info="The minimum percentage to increase a bid.",
114
+ )
115
+
116
+ thread_num = gr.Slider(
117
+ minimum=1,
118
+ maximum=BIDDER_NUM,
119
+ value=min(5, BIDDER_NUM),
120
+ step=1,
121
+ interactive=True,
122
+ label='Thread Number',
123
+ info="More threads, faster bidding, but will run into RateLimitError quicker."
124
+ )
125
+
126
+ with gr.Row():
127
+ bidder_info_gr = []
128
+ chatbots = []
129
+ monitors = []
130
+ textbox_list = []
131
+ for i in range(BIDDER_NUM):
132
+ with gr.Tab(label=f"Bidder {i+1}"):
133
+ with gr.Row().style(equal_height=True):
134
+ with gr.Column(scale=6):
135
+ with gr.Row():
136
+ chatbot = gr.Chatbot(elem_id="chuanhu_chatbot", height=600, label='Auction Log')
137
+ input_box = gr.Textbox(label="Human Bidder Input", interactive=False, placeholder="Please wait a moment before engaging in the auction.", visible=False)
138
+ chatbots.append(chatbot)
139
+ textbox_list.append(input_box)
140
+ with gr.Column(scale=4):
141
+ with gr.Tab(label=f'Parameters'):
142
+ model_name = gr.Dropdown(
143
+ choices=[
144
+ 'rule',
145
+ 'human',
146
+ 'gpt-3.5-turbo-0613',
147
+ 'gpt-3.5-turbo-16k-0613',
148
+ 'gpt-4-0613',
149
+ # 'claude-instant-1.1',
150
+ 'claude-instant-1.2',
151
+ # 'claude-1.3',
152
+ 'claude-2.0',
153
+ # 'chat-bison-001',
154
+ ],
155
+ value='gpt-3.5-turbo-16k-0613',
156
+ label="Model Selection",
157
+ )
158
+ budget = gr.Number(
159
+ value=10000,
160
+ label='Budget ($)'
161
+ )
162
+ with gr.Row():
163
+ plan_strategy = gr.Dropdown(
164
+ choices=[
165
+ 'none',
166
+ 'static',
167
+ 'adaptive',
168
+ ],
169
+ value='adaptive',
170
+ label='Planning Strategy',
171
+ info='None: no plan. Static: plan only once. Adaptive: replan for the remaining items.'
172
+ )
173
+ desire = gr.Dropdown(
174
+ choices=[
175
+ # 'default',
176
+ 'maximize_profit',
177
+ 'maximize_items',
178
+ # 'specific_items',
179
+ ],
180
+ value='maximize_profit',
181
+ label='Desire',
182
+ info='Default desires: spending all the budget, stay within budget. All desires include the default one.',
183
+ )
184
+ overestimate_percent = gr.Slider(
185
+ minimum=-100,
186
+ maximum=100,
187
+ value=10,
188
+ step=10,
189
+ interactive=True,
190
+ label='Overestimate Percent (%)',
191
+ info="Overestimate the true value of items by this percentage.",
192
+ )
193
+ with gr.Row():
194
+ correct_belief = gr.Checkbox(
195
+ label='Correct Wrong Beliefs',
196
+ value=True,
197
+ info='Forceful beliefs correction about self and others.',
198
+ )
199
+ enable_learning = gr.Checkbox(
200
+ label='Enable Learning',
201
+ value=False,
202
+ info='Learn from past auctions for future guidance. Only for adaptive bidder.',
203
+ visible=False
204
+ )
205
+ temperature = gr.Slider(
206
+ minimum=0.,
207
+ maximum=2.0,
208
+ value=0.7,
209
+ step=0.1,
210
+ interactive=True,
211
+ label="Temperature",
212
+ )
213
+
214
+ # deprecated
215
+ # special_items = gr.CheckboxGroup(
216
+ # value = [],
217
+ # label='Special Items',
218
+ # info='Special items add 20% value for you personally.',
219
+ # visible=False,
220
+ # )
221
+ # hedge_percent = gr.Slider(
222
+ # minimum=0,
223
+ # maximum=100,
224
+ # value=90,
225
+ # step=1,
226
+ # interactive=True,
227
+ # label='Strategy (Hedging %)',
228
+ # info="The maximum percentage of the estimated value to bid on an item.",
229
+ # visible=False
230
+ # )
231
+
232
+ with gr.Tab(label='Monitors'):
233
+ with gr.Row():
234
+ budget_monitor = gr.Number(label='Budget Left ($)', interactive=False)
235
+ profit_monitor = gr.Number(label='Profit ($)', interactive=False)
236
+
237
+ with gr.Row():
238
+ engagement_monitor = gr.Number(
239
+ label='Engagement',
240
+ interactive=False,
241
+ info='The number of times the bidder has bid.'
242
+ )
243
+ failure_monitor = gr.Number(
244
+ label='Failed Bids',
245
+ info='Out-of-budget, or less than the previous highest bid.',
246
+ interactive=False
247
+ )
248
+
249
+ items_own_monitor = gr.DataFrame(
250
+ label='Items Owned',
251
+ headers=['Item', 'Bid ($)', 'Value ($)'],
252
+ datatype=['str', 'number', 'number'],
253
+ interactive=False,
254
+ )
255
+
256
+ with gr.Row():
257
+ tokens_monitor = gr.Number(
258
+ label='Token Used',
259
+ interactive=False,
260
+ info='Tokens used in the last call.'
261
+ )
262
+ money_monitor = gr.Number(
263
+ label='API Cost ($)',
264
+ info='Only OpenAI cost for now.',
265
+ interactive=False
266
+ )
267
+
268
+ plan_change_monitor = gr.DataFrame(
269
+ label='Plan Changes',
270
+ headers=['Round', 'Changed', 'New Plan'],
271
+ datatype=['str', 'bool', 'str'],
272
+ interactive=False,
273
+ )
274
+
275
+ plot_monitor = gr.Plot(
276
+ label='Budget-Profit Plot',
277
+ interactive=False
278
+ )
279
+
280
+ with gr.Tab(label='Belief Errors'):
281
+ with gr.Row():
282
+ self_belief_error_cnt_monitor = gr.Number(
283
+ label='Wrong Beliefs of Self',
284
+ info='Not knowing its own budget, bid items, or won items.',
285
+ interactive=False,
286
+ )
287
+ other_belief_error_cnt_monitor = gr.Number(
288
+ label='Wrong Beliefs of Others',
289
+ info='Not knowing other bidders\' profits.',
290
+ interactive=False,
291
+ )
292
+ budget_belief_monitor = gr.DataFrame(
293
+ label='Wrong Belief of Budget ($)',
294
+ headers=['Round', 'Belief', 'Truth'],
295
+ datatype=['str', 'number', 'number'],
296
+ interactive=False,
297
+ )
298
+ profit_belief_monitor = gr.DataFrame(
299
+ label='Wrong Belief of Profit ($)',
300
+ headers=['Bidder (Round)', 'Belief', 'Truth'],
301
+ datatype=['str', 'number', 'number'],
302
+ interactive=False,
303
+ )
304
+ win_bid_belief_monitor = gr.DataFrame(
305
+ label='Wrong Belief of Items Won',
306
+ headers=['Bidder (Round)',
307
+ 'Belief', 'Truth'],
308
+ datatype=['str', 'str', 'str'],
309
+ interactive=False,
310
+ )
311
+
312
+ monitors += [
313
+ budget_monitor,
314
+ profit_monitor,
315
+ items_own_monitor,
316
+ tokens_monitor,
317
+ money_monitor,
318
+ failure_monitor,
319
+ self_belief_error_cnt_monitor,
320
+ other_belief_error_cnt_monitor,
321
+ engagement_monitor,
322
+ plot_monitor,
323
+ plan_change_monitor,
324
+ budget_belief_monitor,
325
+ profit_belief_monitor,
326
+ win_bid_belief_monitor,
327
+ ]
328
+
329
+ bidder_info_gr += [
330
+ chatbot,
331
+ model_name,
332
+ desire,
333
+ plan_strategy,
334
+ budget,
335
+ correct_belief,
336
+ enable_learning,
337
+ temperature,
338
+ overestimate_percent,
339
+ ]
340
+
341
+ with gr.Row():
342
+ with gr.Column():
343
+ startBtn = gr.Button('Start Bidding', variant='primary', interactive=True)
344
+ with gr.Column():
345
+ clearBtn = gr.Button('New Auction', variant='secondary', interactive=False)
346
+ btn_list = [startBtn, clearBtn]
347
+
348
+ with gr.Accordion(label='Bidding Log (click to open)', open=True):
349
+ with gr.Row():
350
+ bidding_log = gr.Markdown(value="")
351
+
352
+ gr.Markdown(description)
353
+
354
+ bidder_list_state = gr.State([]) # session state
355
+
356
+ start_args = dict(
357
+ fn=auction_loop_app,
358
+ inputs=[bidder_list_state, items_checkbox, openai_key, anthropic_key, thread_num, item_shuffle, enable_discount, min_markup_pct] + bidder_info_gr,
359
+ outputs=[bidder_list_state] + chatbots + monitors + [bidding_log] + btn_list + textbox_list, # TODO: handle textbox_list interactivity
360
+ show_progress=True,
361
+ )
362
+ start_event = startBtn.click(**start_args)
363
+
364
+ def bot(user_message, bidder_list, id):
365
+ if len(bidder_list) > 0:
366
+ bidder = bidder_list[int(id)]
367
+ if bidder.need_input:
368
+ bidder.input_box = user_message
369
+ bidder.semaphore += 1
370
+ return '', bidder_list
371
+
372
+ # handle user input from time to time
373
+ for i in range(len(textbox_list)):
374
+ _dummy_id = gr.Number(i, visible=False, interactive=False)
375
+ textbox_list[i].submit(
376
+ bot,
377
+ [textbox_list[i], bidder_list_state, _dummy_id],
378
+ [textbox_list[i], bidder_list_state])
379
+
380
+ clearBtn.click(reset_state_list,
381
+ inputs=[bidder_list_state] + chatbots + monitors + [bidding_log],
382
+ outputs=[bidder_list_state] + chatbots + monitors + [bidding_log],
383
+ show_progress=True).then(lambda: gr.update(interactive=True), outputs=[startBtn])
384
+
385
+ demo.title = 'Auction Arena'
386
+
387
+
388
+ demo.queue(max_size=64, concurrency_count=16).launch(
389
+ # server_name='0.0.0.0',
390
+ # ssl_verify=False,
391
+ # share=True,
392
+ # debug=True,
393
+ show_api=False,
394
+ )
395
+
396
+ demo.close()
app_modules/overwrites.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ import logging
3
+
4
+ # from llama_index import Prompt
5
+ from typing import List, Tuple
6
+ # import mdtex2html
7
+
8
+ from app_modules.presets import *
9
+ from app_modules.utils import *
10
+
11
+ def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
12
+ logging.debug("Compacting text chunks...🚀🚀🚀")
13
+ combined_str = [c.strip() for c in text_chunks if c.strip()]
14
+ combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
15
+ combined_str = "\n\n".join(combined_str)
16
+ # resplit based on self.max_chunk_overlap
17
+ text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
18
+ return text_splitter.split_text(combined_str)
19
+
20
+
21
+ def postprocess(
22
+ self, y: List[Tuple[str | None, str | None]]
23
+ ) -> List[Tuple[str | None, str | None]]:
24
+ """
25
+ Parameters:
26
+ y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
27
+ Returns:
28
+ List of tuples representing the message and response. Each message and response will be a string of HTML.
29
+ """
30
+ if y is None or y == []:
31
+ return []
32
+ temp = []
33
+ for x in y:
34
+ user, bot = x
35
+ if not detect_converted_mark(user):
36
+ user = convert_asis(user)
37
+ if not detect_converted_mark(bot):
38
+ bot = convert_mdtext(bot)
39
+ temp.append((user, bot))
40
+ return temp
41
+
42
+ with open("./assets/custom.js", "r", encoding="utf-8") as f, open("./assets/Kelpy-Codos.js", "r", encoding="utf-8") as f2:
43
+ customJS = f.read()
44
+ kelpyCodos = f2.read()
45
+
46
+ def reload_javascript():
47
+ print("Reloading javascript...")
48
+ js = f'<script>{customJS}</script><script>{kelpyCodos}</script>'
49
+ def template_response(*args, **kwargs):
50
+ res = GradioTemplateResponseOriginal(*args, **kwargs)
51
+ res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
52
+ res.init_headers()
53
+ return res
54
+
55
+ gr.routes.templates.TemplateResponse = template_response
56
+
57
+ GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
app_modules/presets.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+
4
+ title = """<h1 align="center" style="min-width:200px; margin-top:0;"> <img src="https://raw.githubusercontent.com/jiangjiechen/jiangjiechen.github.io/1f23a6b72b7e0b57a54e31a583c9f668a2b8b4b6/media/icon_hua9f9b78e35233aa477f7219cbf68418f_67044_512x512_fill_lanczos_center_3.png" width="32px" style="display: inline"> Auction Arena </h1>"""
5
+
6
+ description_top = """\
7
+ <div align="center">
8
+ <p>
9
+ An interactive demo for this paper: <a href="https://auction-arena.github.io">Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena</a>. Details of this work can be found at <a href="https://auction-arena.github.io">this page</a>. You can watch AI vs AI in this auction arena, or you can set `model_name=human` to engage in the arena personally. Please enter your API key before start, otherwise you will have errors (please refresh the page if you do). Feel free to <a href="mailto:jjchen19@fudan.edu.cn">contact us</a> if you have any questions!
10
+ </p >
11
+ </div>
12
+ """
13
+ description = """\
14
+ <div align="center" style="margin:16px 0">
15
+ The demo is built on <a href="https://github.com/GaiZhenbiao/ChuanhuChatGPT">ChuanhuChatGPT</a>.
16
+ </div>
17
+ """
18
+
19
+ small_and_beautiful_theme = gr.themes.Soft(
20
+ primary_hue=gr.themes.Color(
21
+ c50="#02C160",
22
+ c100="rgba(2, 193, 96, 0.2)",
23
+ c200="#02C160",
24
+ c300="rgba(2, 193, 96, 0.32)",
25
+ c400="rgba(2, 193, 96, 0.32)",
26
+ c500="rgba(2, 193, 96, 1.0)",
27
+ c600="rgba(2, 193, 96, 1.0)",
28
+ c700="rgba(2, 193, 96, 0.32)",
29
+ c800="rgba(2, 193, 96, 0.32)",
30
+ c900="#02C160",
31
+ c950="#02C160",
32
+ ),
33
+ secondary_hue=gr.themes.Color(
34
+ c50="#576b95",
35
+ c100="#576b95",
36
+ c200="#576b95",
37
+ c300="#576b95",
38
+ c400="#576b95",
39
+ c500="#576b95",
40
+ c600="#576b95",
41
+ c700="#576b95",
42
+ c800="#576b95",
43
+ c900="#576b95",
44
+ c950="#576b95",
45
+ ),
46
+ neutral_hue=gr.themes.Color(
47
+ name="gray",
48
+ c50="#f9fafb",
49
+ c100="#f3f4f6",
50
+ c200="#e5e7eb",
51
+ c300="#d1d5db",
52
+ c400="#B2B2B2",
53
+ c500="#808080",
54
+ c600="#636363",
55
+ c700="#515151",
56
+ c800="#393939",
57
+ c900="#272727",
58
+ c950="#171717",
59
+ ),
60
+ radius_size=gr.themes.sizes.radius_sm,
61
+ ).set(
62
+ button_primary_background_fill="#06AE56",
63
+ button_primary_background_fill_dark="#06AE56",
64
+ button_primary_background_fill_hover="#07C863",
65
+ button_primary_border_color="#06AE56",
66
+ button_primary_border_color_dark="#06AE56",
67
+ button_primary_text_color="#FFFFFF",
68
+ button_primary_text_color_dark="#FFFFFF",
69
+ button_secondary_background_fill="#F2F2F2",
70
+ button_secondary_background_fill_dark="#2B2B2B",
71
+ button_secondary_text_color="#393939",
72
+ button_secondary_text_color_dark="#FFFFFF",
73
+ # background_fill_primary="#F7F7F7",
74
+ # background_fill_primary_dark="#1F1F1F",
75
+ block_title_text_color="*primary_500",
76
+ block_title_background_fill="*primary_100",
77
+ input_background_fill="#F6F6F6",
78
+ )
app_modules/utils.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding:utf-8 -*-
2
+ from __future__ import annotations
3
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
4
+ import logging
5
+ # import json
6
+ # import os
7
+ # import datetime
8
+ # import hashlib
9
+ # import csv
10
+ # import requests
11
+ import re
12
+ import html
13
+ # import markdown2
14
+ import torch
15
+ import sys
16
+ import gc
17
+ from pygments.lexers import guess_lexer, ClassNotFound
18
+
19
+ import gradio as gr
20
+ # from pypinyin import lazy_pinyin
21
+ # import tiktoken
22
+ # import mdtex2html
23
+ # from markdown import markdown
24
+ from pygments import highlight
25
+ from pygments.lexers import guess_lexer,get_lexer_by_name
26
+ from pygments.formatters import HtmlFormatter
27
+ # import transformers
28
+ # from peft import PeftModel
29
+ # from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
30
+
31
+ from app_modules.presets import *
32
+
33
+ # logging.basicConfig(
34
+ # level=logging.INFO,
35
+ # format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
36
+ # )
37
+
38
+
39
+ def markdown_to_html_with_syntax_highlight(md_str):
40
+ def replacer(match):
41
+ lang = match.group(1) or "text"
42
+ code = match.group(2)
43
+ lang = lang.strip()
44
+ #print(1,lang)
45
+ if lang=="text":
46
+ lexer = guess_lexer(code)
47
+ lang = lexer.name
48
+ #print(2,lang)
49
+ try:
50
+ lexer = get_lexer_by_name(lang, stripall=True)
51
+ except ValueError:
52
+ lexer = get_lexer_by_name("python", stripall=True)
53
+ formatter = HtmlFormatter()
54
+ #print(3,lexer.name)
55
+ highlighted_code = highlight(code, lexer, formatter)
56
+
57
+ return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
58
+
59
+ code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
60
+ md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
61
+
62
+ html_str = markdown(md_str)
63
+ return html_str
64
+
65
+
66
+ def normalize_markdown(md_text: str) -> str:
67
+ lines = md_text.split("\n")
68
+ normalized_lines = []
69
+ inside_list = False
70
+
71
+ for i, line in enumerate(lines):
72
+ if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
73
+ if not inside_list and i > 0 and lines[i - 1].strip() != "":
74
+ normalized_lines.append("")
75
+ inside_list = True
76
+ normalized_lines.append(line)
77
+ elif inside_list and line.strip() == "":
78
+ if i < len(lines) - 1 and not re.match(
79
+ r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
80
+ ):
81
+ normalized_lines.append(line)
82
+ continue
83
+ else:
84
+ inside_list = False
85
+ normalized_lines.append(line)
86
+
87
+ return "\n".join(normalized_lines)
88
+
89
+
90
+ def convert_mdtext(md_text):
91
+ code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
92
+ inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
93
+ code_blocks = code_block_pattern.findall(md_text)
94
+ non_code_parts = code_block_pattern.split(md_text)[::2]
95
+
96
+ result = []
97
+ for non_code, code in zip(non_code_parts, code_blocks + [""]):
98
+ if non_code.strip():
99
+ non_code = normalize_markdown(non_code)
100
+ if inline_code_pattern.search(non_code):
101
+ result.append(markdown(non_code, extensions=["tables"]))
102
+ else:
103
+ result.append(mdtex2html.convert(non_code, extensions=["tables"]))
104
+ if code.strip():
105
+ code = f"\n```{code}\n\n```"
106
+ code = markdown_to_html_with_syntax_highlight(code)
107
+ result.append(code)
108
+ result = "".join(result)
109
+ result += ALREADY_CONVERTED_MARK
110
+ return result
111
+
112
+ def convert_asis(userinput):
113
+ return f"<p style=\"white-space:pre-wrap;\">{html.escape(userinput)}</p>"+ALREADY_CONVERTED_MARK
114
+
115
+ def detect_converted_mark(userinput):
116
+ if userinput.endswith(ALREADY_CONVERTED_MARK):
117
+ return True
118
+ else:
119
+ return False
120
+
121
+
122
+
123
+ def detect_language(code):
124
+ if code.startswith("\n"):
125
+ first_line = ""
126
+ else:
127
+ first_line = code.strip().split("\n", 1)[0]
128
+ language = first_line.lower() if first_line else ""
129
+ code_without_language = code[len(first_line) :].lstrip() if first_line else code
130
+ return language, code_without_language
131
+
132
+ def convert_to_markdown(text):
133
+ text = text.replace("$","&#36;")
134
+ def replace_leading_tabs_and_spaces(line):
135
+ new_line = []
136
+
137
+ for char in line:
138
+ if char == "\t":
139
+ new_line.append("&#9;")
140
+ elif char == " ":
141
+ new_line.append("&nbsp;")
142
+ else:
143
+ break
144
+ return "".join(new_line) + line[len(new_line):]
145
+
146
+ markdown_text = ""
147
+ lines = text.split("\n")
148
+ in_code_block = False
149
+
150
+ for line in lines:
151
+ if in_code_block is False and line.startswith("```"):
152
+ in_code_block = True
153
+ markdown_text += f"{line}\n"
154
+ elif in_code_block is True and line.startswith("```"):
155
+ in_code_block = False
156
+ markdown_text += f"{line}\n"
157
+ elif in_code_block:
158
+ markdown_text += f"{line}\n"
159
+ else:
160
+ line = replace_leading_tabs_and_spaces(line)
161
+ line = re.sub(r"^(#)", r"\\\1", line)
162
+ markdown_text += f"{line} \n"
163
+
164
+ return markdown_text
165
+
166
+ def add_language_tag(text):
167
+ def detect_language(code_block):
168
+ try:
169
+ lexer = guess_lexer(code_block)
170
+ return lexer.name.lower()
171
+ except ClassNotFound:
172
+ return ""
173
+
174
+ code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
175
+
176
+ def replacement(match):
177
+ code_block = match.group(2)
178
+ if match.group(2).startswith("\n"):
179
+ language = detect_language(code_block)
180
+ if language:
181
+ return f"```{language}{code_block}```"
182
+ else:
183
+ return f"```\n{code_block}```"
184
+ else:
185
+ return match.group(1) + code_block + "```"
186
+
187
+ text2 = code_block_pattern.sub(replacement, text)
188
+ return text2
189
+
190
+ def delete_last_conversation(chatbot, history):
191
+ if len(chatbot) > 0:
192
+ chatbot.pop()
193
+
194
+ if len(history) > 0:
195
+ history.pop()
196
+
197
+ return (
198
+ chatbot,
199
+ history,
200
+ "Delete Done",
201
+ )
202
+
203
+ def reset_state():
204
+ return [], [], "Reset Done"
205
+
206
+ def reset_textbox():
207
+ return gr.update(value=""),""
208
+
209
+ def cancel_outputing():
210
+ return "Stop Done"
211
+
212
+ def transfer_input(inputs):
213
+ textbox = reset_textbox()
214
+ return (
215
+ inputs,
216
+ gr.update(value=""),
217
+ gr.Button.update(visible=True),
218
+ )
219
+
220
+
221
+ class State:
222
+ interrupted = False
223
+
224
+ def interrupt(self):
225
+ self.interrupted = True
226
+
227
+ def recover(self):
228
+ self.interrupted = False
229
+ shared_state = State()
230
+
231
+
232
+
233
+
234
+
235
+ # Greedy Search
236
+ def greedy_search(input_ids: torch.Tensor,
237
+ model: torch.nn.Module,
238
+ tokenizer: transformers.PreTrainedTokenizer,
239
+ stop_words: list,
240
+ max_length: int,
241
+ temperature: float = 1.0,
242
+ top_p: float = 1.0,
243
+ top_k: int = 25) -> Iterator[str]:
244
+ generated_tokens = []
245
+ past_key_values = None
246
+ current_length = 1
247
+ for i in range(max_length):
248
+ with torch.no_grad():
249
+ if past_key_values is None:
250
+ outputs = model(input_ids)
251
+ else:
252
+ outputs = model(input_ids[:, -1:], past_key_values=past_key_values)
253
+ logits = outputs.logits[:, -1, :]
254
+ past_key_values = outputs.past_key_values
255
+
256
+ # apply temperature
257
+ logits /= temperature
258
+
259
+ probs = torch.softmax(logits, dim=-1)
260
+ # apply top_p
261
+ probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
262
+ probs_sum = torch.cumsum(probs_sort, dim=-1)
263
+ mask = probs_sum - probs_sort > top_p
264
+ probs_sort[mask] = 0.0
265
+
266
+ # apply top_k
267
+ #if top_k is not None:
268
+ # probs_sort1, _ = torch.topk(probs_sort, top_k)
269
+ # min_top_probs_sort = torch.min(probs_sort1, dim=-1, keepdim=True).values
270
+ # probs_sort = torch.where(probs_sort < min_top_probs_sort, torch.full_like(probs_sort, float(0.0)), probs_sort)
271
+
272
+ probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
273
+ next_token = torch.multinomial(probs_sort, num_samples=1)
274
+ next_token = torch.gather(probs_idx, -1, next_token)
275
+
276
+ input_ids = torch.cat((input_ids, next_token), dim=-1)
277
+
278
+ generated_tokens.append(next_token[0].item())
279
+ text = tokenizer.decode(generated_tokens)
280
+
281
+ yield text
282
+ if any([x in text for x in stop_words]):
283
+ del past_key_values
284
+ del logits
285
+ del probs
286
+ del probs_sort
287
+ del probs_idx
288
+ del probs_sum
289
+ gc.collect()
290
+ return
291
+
292
+ def generate_prompt_with_history(text,history,tokenizer,max_length=2048):
293
+ prompt = "The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n[|Human|]Hello!\n[|AI|]Hi!"
294
+ history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0],x[1]) for x in history]
295
+ history.append("\n[|Human|]{}\n[|AI|]".format(text))
296
+ history_text = ""
297
+ flag = False
298
+ for x in history[::-1]:
299
+ if tokenizer(prompt+history_text+x, return_tensors="pt")['input_ids'].size(-1) <= max_length:
300
+ history_text = x + history_text
301
+ flag = True
302
+ else:
303
+ break
304
+ if flag:
305
+ return prompt+history_text,tokenizer(prompt+history_text, return_tensors="pt")
306
+ else:
307
+ return None
308
+
309
+
310
+ def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
311
+ for stop_word in stop_words:
312
+ if s.endswith(stop_word):
313
+ return True
314
+ for i in range(1, len(stop_word)):
315
+ if s.endswith(stop_word[:i]):
316
+ return True
317
+ return False
318
+
319
+
320
+
321
+ def load_tokenizer_and_model(base_model,adapter_model=None,load_8bit=False):
322
+ if torch.cuda.is_available():
323
+ device = "cuda"
324
+ else:
325
+ device = "cpu"
326
+
327
+ try:
328
+ if torch.backends.mps.is_available():
329
+ device = "mps"
330
+ except: # noqa: E722
331
+ pass
332
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
333
+ if device == "cuda":
334
+ model = LlamaForCausalLM.from_pretrained(
335
+ base_model,
336
+ load_in_8bit=load_8bit,
337
+ torch_dtype=torch.float16,
338
+ device_map="auto",
339
+ )
340
+ if adapter_model is not None:
341
+ model = PeftModel.from_pretrained(
342
+ model,
343
+ adapter_model,
344
+ torch_dtype=torch.float16,
345
+ )
346
+ elif device == "mps":
347
+ model = LlamaForCausalLM.from_pretrained(
348
+ base_model,
349
+ device_map={"": device},
350
+ torch_dtype=torch.float16,
351
+ )
352
+ if adapter_model is not None:
353
+ model = PeftModel.from_pretrained(
354
+ model,
355
+ adapter_model,
356
+ device_map={"": device},
357
+ torch_dtype=torch.float16,
358
+ )
359
+ else:
360
+ model = LlamaForCausalLM.from_pretrained(
361
+ base_model, device_map={"": device}, low_cpu_mem_usage=True
362
+ )
363
+ if adapter_model is not None:
364
+ model = PeftModel.from_pretrained(
365
+ model,
366
+ adapter_model,
367
+ device_map={"": device},
368
+ )
369
+
370
+ if not load_8bit:
371
+ model.half() # seems to fix bugs for some users.
372
+
373
+ model.eval()
374
+ return tokenizer,model,device
375
+
assets/Kelpy-Codos.js ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // ==UserScript==
2
+ // @name Kelpy Codos
3
+ // @namespace https://github.com/Keldos-Li/Kelpy-Codos
4
+ // @version 1.0.5
5
+ // @author Keldos; https://keldos.me/
6
+ // @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially.
7
+ // Based on Chuanhu ChatGPT version: ac04408 (2023-3-22)
8
+ // @license GPL-3.0
9
+ // @grant none
10
+ // ==/UserScript==
11
+
12
+ (function () {
13
+ 'use strict';
14
+
15
+ function addCopyButton(pre) {
16
+ var code = pre.querySelector('code');
17
+ if (!code) {
18
+ return; // 如果没有找到 <code> 元素,则不添加按钮
19
+ }
20
+ var firstChild = code.firstChild;
21
+ if (!firstChild) {
22
+ return; // 如果 <code> 元素没有子节点,则不添加按钮
23
+ }
24
+ var button = document.createElement('button');
25
+ button.textContent = '\uD83D\uDCCE'; // 使用 📎 符号作为“复制”按钮的文本
26
+ button.style.position = 'relative';
27
+ button.style.float = 'right';
28
+ button.style.fontSize = '1em'; // 可选:调整按钮大小
29
+ button.style.background = 'none'; // 可选:去掉背景颜色
30
+ button.style.border = 'none'; // 可选:去掉边框
31
+ button.style.cursor = 'pointer'; // 可选:显示指针样式
32
+ button.addEventListener('click', function () {
33
+ var range = document.createRange();
34
+ range.selectNodeContents(code);
35
+ range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前
36
+ var selection = window.getSelection();
37
+ selection.removeAllRanges();
38
+ selection.addRange(range);
39
+
40
+ try {
41
+ var success = document.execCommand('copy');
42
+ if (success) {
43
+ button.textContent = '\u2714';
44
+ setTimeout(function () {
45
+ button.textContent = '\uD83D\uDCCE'; // 恢复按钮为“复制”
46
+ }, 2000);
47
+ } else {
48
+ button.textContent = '\u2716';
49
+ }
50
+ } catch (e) {
51
+ console.error(e);
52
+ button.textContent = '\u2716';
53
+ }
54
+
55
+ selection.removeAllRanges();
56
+ });
57
+ code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前
58
+ }
59
+
60
+ function handleNewElements(mutationsList, observer) {
61
+ for (var mutation of mutationsList) {
62
+ if (mutation.type === 'childList') {
63
+ for (var node of mutation.addedNodes) {
64
+ if (node.nodeName === 'PRE') {
65
+ addCopyButton(node);
66
+ }
67
+ }
68
+ }
69
+ }
70
+ }
71
+
72
+ var observer = new MutationObserver(handleNewElements);
73
+ observer.observe(document.documentElement, { childList: true, subtree: true });
74
+
75
+ document.querySelectorAll('pre').forEach(addCopyButton);
76
+ })();
assets/custom.css ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ :root {
2
+ --chatbot-color-light: #F3F3F3;
3
+ --chatbot-color-dark: #121111;
4
+ }
5
+
6
+ /* status_display */
7
+ #status_display {
8
+ display: flex;
9
+ min-height: 2.5em;
10
+ align-items: flex-end;
11
+ justify-content: flex-end;
12
+ }
13
+ #status_display p {
14
+ font-size: .85em;
15
+ font-family: monospace;
16
+ color: var(--body-text-color-subdued);
17
+ }
18
+
19
+
20
+
21
+ /* usage_display */
22
+ #usage_display {
23
+ height: 1em;
24
+ }
25
+ #usage_display p{
26
+ padding: 0 1em;
27
+ font-size: .85em;
28
+ font-family: monospace;
29
+ color: var(--body-text-color-subdued);
30
+ }
31
+ /* list */
32
+ ol:not(.options), ul:not(.options) {
33
+ padding-inline-start: 2em !important;
34
+ }
35
+
36
+ /* Thank @Keldos-Li for fixing it */
37
+ /* Light mode (default) */
38
+ #chuanhu_chatbot {
39
+ background-color: var(--chatbot-color-light) !important;
40
+ color: #000000 !important;
41
+ }
42
+ [data-testid = "bot"] {
43
+ background-color: #FFFFFF !important;
44
+ }
45
+ [data-testid = "user"] {
46
+ background-color: #95EC69 !important;
47
+ }
48
+
49
+ /* Dark mode */
50
+ .dark #chuanhu_chatbot {
51
+ background-color: var(--chatbot-color-dark) !important;
52
+ color: #FFFFFF !important;
53
+ }
54
+ .dark [data-testid = "bot"] {
55
+ background-color: #2C2C2C !important;
56
+ }
57
+ .dark [data-testid = "user"] {
58
+ background-color: #26B561 !important;
59
+ }
60
+
61
+ #chuanhu_chatbot {
62
+ height: 100%;
63
+ min-height: 400px;
64
+ }
65
+
66
+ [class *= "message"] {
67
+ border-radius: var(--radius-xl) !important;
68
+ border: none;
69
+ padding: var(--spacing-xl) !important;
70
+ font-size: var(--text-md) !important;
71
+ line-height: var(--line-md) !important;
72
+ min-height: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
73
+ min-width: calc(var(--text-md)*var(--line-md) + 2*var(--spacing-xl));
74
+ }
75
+ [data-testid = "bot"] {
76
+ max-width: 85%;
77
+ border-bottom-left-radius: 0 !important;
78
+ }
79
+ [data-testid = "user"] {
80
+ max-width: 85%;
81
+ width: auto !important;
82
+ border-bottom-right-radius: 0 !important;
83
+ }
84
+ /* Table */
85
+ table {
86
+ margin: 1em 0;
87
+ border-collapse: collapse;
88
+ empty-cells: show;
89
+ }
90
+ td,th {
91
+ border: 1.2px solid var(--border-color-primary) !important;
92
+ padding: 0.2em;
93
+ }
94
+ thead {
95
+ background-color: rgba(175,184,193,0.2);
96
+ }
97
+ thead th {
98
+ padding: .5em .2em;
99
+ }
100
+ /* Inline code */
101
+ #chuanhu_chatbot code {
102
+ display: inline;
103
+ white-space: break-spaces;
104
+ border-radius: 6px;
105
+ margin: 0 2px 0 2px;
106
+ padding: .2em .4em .1em .4em;
107
+ background-color: rgba(175,184,193,0.2);
108
+ }
109
+ /* Code block */
110
+ #chuanhu_chatbot pre code {
111
+ display: block;
112
+ overflow: auto;
113
+ white-space: pre;
114
+ background-color: hsla(0, 0%, 0%, 80%)!important;
115
+ border-radius: 10px;
116
+ padding: 1.4em 1.2em 0em 1.4em;
117
+ margin: 1.2em 2em 1.2em 0.5em;
118
+ color: #FFF;
119
+ box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
120
+ }
121
+ /* Hightlight */
122
+ #chuanhu_chatbot .highlight { background-color: transparent }
123
+ #chuanhu_chatbot .highlight .hll { background-color: #49483e }
124
+ #chuanhu_chatbot .highlight .c { color: #75715e } /* Comment */
125
+ #chuanhu_chatbot .highlight .err { color: #960050; background-color: #1e0010 } /* Error */
126
+ #chuanhu_chatbot .highlight .k { color: #66d9ef } /* Keyword */
127
+ #chuanhu_chatbot .highlight .l { color: #ae81ff } /* Literal */
128
+ #chuanhu_chatbot .highlight .n { color: #f8f8f2 } /* Name */
129
+ #chuanhu_chatbot .highlight .o { color: #f92672 } /* Operator */
130
+ #chuanhu_chatbot .highlight .p { color: #f8f8f2 } /* Punctuation */
131
+ #chuanhu_chatbot .highlight .ch { color: #75715e } /* Comment.Hashbang */
132
+ #chuanhu_chatbot .highlight .cm { color: #75715e } /* Comment.Multiline */
133
+ #chuanhu_chatbot .highlight .cp { color: #75715e } /* Comment.Preproc */
134
+ #chuanhu_chatbot .highlight .cpf { color: #75715e } /* Comment.PreprocFile */
135
+ #chuanhu_chatbot .highlight .c1 { color: #75715e } /* Comment.Single */
136
+ #chuanhu_chatbot .highlight .cs { color: #75715e } /* Comment.Special */
137
+ #chuanhu_chatbot .highlight .gd { color: #f92672 } /* Generic.Deleted */
138
+ #chuanhu_chatbot .highlight .ge { font-style: italic } /* Generic.Emph */
139
+ #chuanhu_chatbot .highlight .gi { color: #a6e22e } /* Generic.Inserted */
140
+ #chuanhu_chatbot .highlight .gs { font-weight: bold } /* Generic.Strong */
141
+ #chuanhu_chatbot .highlight .gu { color: #75715e } /* Generic.Subheading */
142
+ #chuanhu_chatbot .highlight .kc { color: #66d9ef } /* Keyword.Constant */
143
+ #chuanhu_chatbot .highlight .kd { color: #66d9ef } /* Keyword.Declaration */
144
+ #chuanhu_chatbot .highlight .kn { color: #f92672 } /* Keyword.Namespace */
145
+ #chuanhu_chatbot .highlight .kp { color: #66d9ef } /* Keyword.Pseudo */
146
+ #chuanhu_chatbot .highlight .kr { color: #66d9ef } /* Keyword.Reserved */
147
+ #chuanhu_chatbot .highlight .kt { color: #66d9ef } /* Keyword.Type */
148
+ #chuanhu_chatbot .highlight .ld { color: #e6db74 } /* Literal.Date */
149
+ #chuanhu_chatbot .highlight .m { color: #ae81ff } /* Literal.Number */
150
+ #chuanhu_chatbot .highlight .s { color: #e6db74 } /* Literal.String */
151
+ #chuanhu_chatbot .highlight .na { color: #a6e22e } /* Name.Attribute */
152
+ #chuanhu_chatbot .highlight .nb { color: #f8f8f2 } /* Name.Builtin */
153
+ #chuanhu_chatbot .highlight .nc { color: #a6e22e } /* Name.Class */
154
+ #chuanhu_chatbot .highlight .no { color: #66d9ef } /* Name.Constant */
155
+ #chuanhu_chatbot .highlight .nd { color: #a6e22e } /* Name.Decorator */
156
+ #chuanhu_chatbot .highlight .ni { color: #f8f8f2 } /* Name.Entity */
157
+ #chuanhu_chatbot .highlight .ne { color: #a6e22e } /* Name.Exception */
158
+ #chuanhu_chatbot .highlight .nf { color: #a6e22e } /* Name.Function */
159
+ #chuanhu_chatbot .highlight .nl { color: #f8f8f2 } /* Name.Label */
160
+ #chuanhu_chatbot .highlight .nn { color: #f8f8f2 } /* Name.Namespace */
161
+ #chuanhu_chatbot .highlight .nx { color: #a6e22e } /* Name.Other */
162
+ #chuanhu_chatbot .highlight .py { color: #f8f8f2 } /* Name.Property */
163
+ #chuanhu_chatbot .highlight .nt { color: #f92672 } /* Name.Tag */
164
+ #chuanhu_chatbot .highlight .nv { color: #f8f8f2 } /* Name.Variable */
165
+ #chuanhu_chatbot .highlight .ow { color: #f92672 } /* Operator.Word */
166
+ #chuanhu_chatbot .highlight .w { color: #f8f8f2 } /* Text.Whitespace */
167
+ #chuanhu_chatbot .highlight .mb { color: #ae81ff } /* Literal.Number.Bin */
168
+ #chuanhu_chatbot .highlight .mf { color: #ae81ff } /* Literal.Number.Float */
169
+ #chuanhu_chatbot .highlight .mh { color: #ae81ff } /* Literal.Number.Hex */
170
+ #chuanhu_chatbot .highlight .mi { color: #ae81ff } /* Literal.Number.Integer */
171
+ #chuanhu_chatbot .highlight .mo { color: #ae81ff } /* Literal.Number.Oct */
172
+ #chuanhu_chatbot .highlight .sa { color: #e6db74 } /* Literal.String.Affix */
173
+ #chuanhu_chatbot .highlight .sb { color: #e6db74 } /* Literal.String.Backtick */
174
+ #chuanhu_chatbot .highlight .sc { color: #e6db74 } /* Literal.String.Char */
175
+ #chuanhu_chatbot .highlight .dl { color: #e6db74 } /* Literal.String.Delimiter */
176
+ #chuanhu_chatbot .highlight .sd { color: #e6db74 } /* Literal.String.Doc */
177
+ #chuanhu_chatbot .highlight .s2 { color: #e6db74 } /* Literal.String.Double */
178
+ #chuanhu_chatbot .highlight .se { color: #ae81ff } /* Literal.String.Escape */
179
+ #chuanhu_chatbot .highlight .sh { color: #e6db74 } /* Literal.String.Heredoc */
180
+ #chuanhu_chatbot .highlight .si { color: #e6db74 } /* Literal.String.Interpol */
181
+ #chuanhu_chatbot .highlight .sx { color: #e6db74 } /* Literal.String.Other */
182
+ #chuanhu_chatbot .highlight .sr { color: #e6db74 } /* Literal.String.Regex */
183
+ #chuanhu_chatbot .highlight .s1 { color: #e6db74 } /* Literal.String.Single */
184
+ #chuanhu_chatbot .highlight .ss { color: #e6db74 } /* Literal.String.Symbol */
185
+ #chuanhu_chatbot .highlight .bp { color: #f8f8f2 } /* Name.Builtin.Pseudo */
186
+ #chuanhu_chatbot .highlight .fm { color: #a6e22e } /* Name.Function.Magic */
187
+ #chuanhu_chatbot .highlight .vc { color: #f8f8f2 } /* Name.Variable.Class */
188
+ #chuanhu_chatbot .highlight .vg { color: #f8f8f2 } /* Name.Variable.Global */
189
+ #chuanhu_chatbot .highlight .vi { color: #f8f8f2 } /* Name.Variable.Instance */
190
+ #chuanhu_chatbot .highlight .vm { color: #f8f8f2 } /* Name.Variable.Magic */
191
+ #chuanhu_chatbot .highlight .il { color: #ae81ff } /* Literal.Number.Integer.Long */
assets/custom.js ADDED
@@ -0,0 +1 @@
 
 
1
+ // custom javascript here
assets/favicon.ico ADDED
assets/totopower-removebg.png ADDED
auction_workflow.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import gradio as gr
4
+ import ujson as json
5
+ import traceback
6
+ from typing import List
7
+ from tqdm import tqdm
8
+ from src.auctioneer_base import Auctioneer
9
+ from src.bidder_base import Bidder, bidders_to_chatbots, bidding_multithread
10
+ from utils import trace_back
11
+
12
+
13
+ LOG_DIR = 'logs'
14
+ enable_gr = gr.update(interactive=True)
15
+ disable_gr = gr.update(interactive=False)
16
+
17
+
18
+ def monitor_all(bidder_list: List[Bidder]):
19
+ return sum([bidder.to_monitors() for bidder in bidder_list], [])
20
+
21
+
22
+ def parse_bid_price(auctioneer: Auctioneer, bidder: Bidder, msg: str):
23
+ # rebid if the message is not parsible into a bid price
24
+ bid_price = auctioneer.parse_bid(msg)
25
+ while bid_price is None:
26
+ re_msg = bidder.bid("You must be clear about your bidding decision, say either \"I'm out!\" or \"I bid $xxx!\". Please rebid.")
27
+ bid_price = auctioneer.parse_bid(re_msg)
28
+ print(f"{bidder.name} rebid: {re_msg}")
29
+ return bid_price
30
+
31
+
32
+ def enable_human_box(bidder_list):
33
+ signals = []
34
+ for bidder in bidder_list:
35
+ if 'human' in bidder.model_name and not bidder.withdraw:
36
+ signals.append(gr.update(interactive=True, visible=True,
37
+ placeholder="Please bid! Enter \"I'm out\" or \"I bid $xxx\"."))
38
+ else:
39
+ signals.append(disable_gr)
40
+ return signals
41
+
42
+
43
+ def disable_all_box(bidder_list):
44
+ signals = []
45
+ for bidder in bidder_list:
46
+ if 'human' in bidder.model_name:
47
+ signals.append(gr.update(interactive=False, visible=True,
48
+ placeholder="Wait a moment to engage in the auction."))
49
+ else:
50
+ signals.append(gr.update(interactive=False, visible=False))
51
+ return signals
52
+
53
+
54
+ def run_auction(
55
+ auction_hash: str,
56
+ auctioneer: Auctioneer,
57
+ bidder_list: List[Bidder],
58
+ thread_num: int,
59
+ yield_for_demo=True,
60
+ log_dir=LOG_DIR,
61
+ repeat_num=0,
62
+ memo_file=None):
63
+
64
+ # bidder_list[0].verbose=True
65
+
66
+ if yield_for_demo:
67
+ chatbot_list = bidders_to_chatbots(bidder_list)
68
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
69
+
70
+ # ***************** Learn Round ****************
71
+ for bidder in bidder_list:
72
+ if bidder.enable_learning and memo_file:
73
+ # if no prev memo file, then no need to learn.
74
+ if os.path.exists(memo_file):
75
+ with open(memo_file) as f:
76
+ data = json.load(f)
77
+ past_learnings = data['learnings'][bidder.name]
78
+ past_auction_log = data['auction_log']
79
+ bidder.learn_from_prev_auction(past_learnings, past_auction_log)
80
+
81
+ # ***************** Plan Round *****************
82
+ # init bidder profit
83
+ bidder_profit_info = auctioneer.gather_all_status(bidder_list)
84
+ for bidder in bidder_list:
85
+ bidder.set_all_bidders_status(bidder_profit_info)
86
+
87
+ plan_instructs = [bidder.get_plan_instruct(auctioneer.items) for bidder in bidder_list]
88
+
89
+ bidding_multithread(bidder_list, plan_instructs, func_type='plan', thread_num=thread_num)
90
+
91
+ if yield_for_demo:
92
+ chatbot_list = bidders_to_chatbots(bidder_list)
93
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
94
+
95
+ bar = tqdm(total=len(auctioneer.items_queue), desc='Auction Progress')
96
+ while not auctioneer.end_auction():
97
+ cur_item = auctioneer.present_item()
98
+
99
+ bid_round = 0
100
+ while True:
101
+ # ***************** Bid Round *****************
102
+ auctioneer_msg = auctioneer.ask_for_bid(bid_round)
103
+ _bidder_list = []
104
+ _bid_instruct_list = []
105
+ # remove highest bidder and withdrawn bidders
106
+ for bidder in bidder_list:
107
+ if bidder is auctioneer.highest_bidder or bidder.withdraw:
108
+ bidder.need_input = False
109
+ continue
110
+ else:
111
+ bidder.need_input = True # enable input from demo
112
+ instruct = bidder.get_bid_instruct(auctioneer_msg, bid_round)
113
+ _bidder_list.append(bidder)
114
+ _bid_instruct_list.append(instruct)
115
+
116
+ if yield_for_demo:
117
+ chatbot_list = bidders_to_chatbots(bidder_list)
118
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + enable_human_box(bidder_list)
119
+
120
+ _msgs = bidding_multithread(_bidder_list, _bid_instruct_list, func_type='bid', thread_num=thread_num)
121
+
122
+ for i, (msg, bidder) in enumerate(zip(_msgs, _bidder_list)):
123
+ if bidder.model_name == 'rule':
124
+ bid_price = bidder.bid_rule(auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
125
+ else:
126
+ bid_price = parse_bid_price(auctioneer, bidder, msg)
127
+
128
+ # can't bid more than budget or less than previous highest bid
129
+ while True:
130
+ fail_msg = bidder.bid_sanity_check(bid_price, auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
131
+ if fail_msg is None:
132
+ break
133
+ else:
134
+ bidder.need_input = True # enable input from demo
135
+ auctioneer_msg = auctioneer.ask_for_rebid(fail_msg=fail_msg, bid_price=bid_price)
136
+ rebid_instruct = bidder.get_rebid_instruct(auctioneer_msg)
137
+
138
+ if yield_for_demo:
139
+ chatbot_list = bidders_to_chatbots(bidder_list)
140
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
141
+
142
+ msg = bidder.rebid_for_failure(rebid_instruct)
143
+ bid_price = parse_bid_price(auctioneer, bidder, msg)
144
+
145
+ if yield_for_demo:
146
+ chatbot_list = bidders_to_chatbots(bidder_list)
147
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
148
+
149
+ bidder.set_withdraw(bid_price)
150
+ auctioneer.record_bid({'bidder': bidder, 'bid': bid_price, 'raw_msg': msg}, bid_round)
151
+
152
+ if yield_for_demo:
153
+ chatbot_list = bidders_to_chatbots(bidder_list)
154
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
155
+
156
+ is_sold = auctioneer.check_hammer(bid_round)
157
+ bid_round += 1
158
+ if is_sold:
159
+ break
160
+ else:
161
+ if auctioneer.fail_to_sell and auctioneer.enable_discount:
162
+ for bidder in bidder_list:
163
+ bidder.set_withdraw(0) # back in the game
164
+
165
+ # ***************** Summarize *****************
166
+ summarize_instruct_list = []
167
+ for bidder in bidder_list:
168
+ if bidder is auctioneer.highest_bidder:
169
+ win_lose_msg = bidder.win_bid(cur_item, auctioneer.highest_bid)
170
+ else:
171
+ win_lose_msg = bidder.lose_bid(cur_item)
172
+ msg = bidder.get_summarize_instruct(
173
+ bidding_history=auctioneer.all_bidding_history_to_string(),
174
+ hammer_msg=auctioneer.get_hammer_msg(),
175
+ win_lose_msg=win_lose_msg
176
+ )
177
+ summarize_instruct_list.append(msg)
178
+
179
+ # record profit information of all bidders for each bidder
180
+ # (not used in the auction, just for belief tracking evaluation)
181
+ bidder_profit_info = auctioneer.gather_all_status(bidder_list)
182
+ for bidder in bidder_list:
183
+ bidder.set_all_bidders_status(bidder_profit_info)
184
+
185
+ bidding_multithread(bidder_list, summarize_instruct_list, func_type='summarize', thread_num=thread_num)
186
+
187
+ if yield_for_demo:
188
+ chatbot_list = bidders_to_chatbots(bidder_list)
189
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
190
+
191
+ # ***************** Replan *****************
192
+ if len(auctioneer.items_queue) > 0: # no need to replan if all items are sold
193
+ replan_instruct_list = [bidder.get_replan_instruct(
194
+ # bidding_history=auctioneer.all_bidding_history_to_string(),
195
+ # hammer_msg=auctioneer.get_hammer_msg()
196
+ ) for bidder in bidder_list]
197
+ bidding_multithread(bidder_list, replan_instruct_list, func_type='replan', thread_num=thread_num)
198
+
199
+ if yield_for_demo:
200
+ chatbot_list = bidders_to_chatbots(bidder_list)
201
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
202
+
203
+ auctioneer.hammer_fall()
204
+ bar.update(1)
205
+
206
+ total_cost = sum([b.openai_cost for b in bidder_list]) + auctioneer.openai_cost
207
+ bidder_reports = [bidder.profit_report() for bidder in bidder_list]
208
+
209
+ if yield_for_demo:
210
+ chatbot_list = bidders_to_chatbots(bidder_list, profit_report=True)
211
+ yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log(bidder_reports) + f'\n## Total Cost: ${total_cost}'] + [disable_gr, enable_gr] + disable_all_box(bidder_list)
212
+
213
+ memo = {'auction_log': auctioneer.log(show_model_name=False),
214
+ 'memo_text': bidder_reports,
215
+ 'profit': {bidder.name: bidder.profit for bidder in bidder_list},
216
+ 'total_cost': total_cost,
217
+ 'learnings': {bidder.name: bidder.learnings for bidder in bidder_list},
218
+ 'model_info': {bidder.name: bidder.model_name for bidder in bidder_list}}
219
+ log_bidders(log_dir, auction_hash, bidder_list, repeat_num, memo)
220
+
221
+ auctioneer.finish_auction()
222
+
223
+ if not yield_for_demo:
224
+ yield total_cost
225
+
226
+
227
+ def log_bidders(log_dir: str, auction_hash: str, bidder_list: List[Bidder], repeat_num: int, memo: dict):
228
+ for bidder in bidder_list:
229
+ log_file = f"{log_dir}/{auction_hash}/{bidder.name.replace(' ', '')}-{repeat_num}.jsonl"
230
+ if not os.path.exists(log_file):
231
+ os.makedirs(os.path.dirname(log_file), exist_ok=True)
232
+ with open(log_file, 'a') as f:
233
+ log_data = bidder.to_monitors(as_json=True)
234
+ f.write(json.dumps(log_data) + '\n')
235
+
236
+ with open(f"{log_dir}/{auction_hash}/memo-{repeat_num}.json", 'w') as f:
237
+ f.write(json.dumps(memo) + '\n')
238
+
239
+
240
+ def make_auction_hash():
241
+ return str(int(time.time()))
242
+
243
+
244
+ if __name__ == '__main__':
245
+ import argparse
246
+ from src.item_base import create_items
247
+ from src.bidder_base import create_bidders
248
+ from transformers import GPT2TokenizerFast
249
+ import cjjpy as cjj
250
+
251
+ parser = argparse.ArgumentParser()
252
+ parser.add_argument('--input_dir', '-i', type=str, default='data/exp_base/')
253
+ parser.add_argument('--shuffle', action='store_true')
254
+ parser.add_argument('--repeat', type=int, default=1)
255
+ parser.add_argument('--threads', '-t', type=int, help='Number of threads. Max is number of bidders. Reduce it if rate limit is low (e.g., GPT-4).', required=True)
256
+ parser.add_argument('--memo_file', '-m', type=str, help='The last memo.json file to be loaded for learning. Only useful when the repeated auctions are interrupted (i.e., auction hash is different).')
257
+ args = parser.parse_args()
258
+
259
+ auction_hash = make_auction_hash()
260
+
261
+ total_money_spent = 0
262
+ for i in tqdm(range(args.repeat), desc='Repeat'):
263
+ cnt = 3
264
+ while cnt > 0:
265
+ try:
266
+ item_file = os.path.join(args.input_dir, f'items_demo.jsonl')
267
+ bidder_file = os.path.join(args.input_dir, f'bidders_demo.jsonl')
268
+ memo_file = args.memo_file if args.memo_file else f'{args.input_dir}/{auction_hash}/memo-{i-1}.json' # past memo for learning
269
+ items = create_items(item_file)
270
+ bidders = create_bidders(bidder_file, auction_hash=auction_hash)
271
+ auctioneer = Auctioneer(enable_discount=False)
272
+ auctioneer.init_items(items)
273
+ if args.shuffle:
274
+ auctioneer.shuffle_items()
275
+ money_spent = list(run_auction(
276
+ auction_hash,
277
+ auctioneer,
278
+ bidders,
279
+ thread_num=min(args.threads, len(bidders)),
280
+ yield_for_demo=False,
281
+ log_dir=args.input_dir,
282
+ repeat_num=i,
283
+ memo_file=memo_file,
284
+ ))
285
+ total_money_spent += sum(money_spent)
286
+ break
287
+ except Exception as e:
288
+ cnt -= 1
289
+ print(f"Error in {i}th auction: {e}\n{trace_back(e)}")
290
+ print(f"Retry {cnt} more times...")
291
+
292
+ print('Total money spent: $', total_money_spent)
293
+ cjj.SendEmail(f'Completed: {args.input_dir} - {auction_hash}', f'Total money spent: ${total_money_spent}')
data/bidders_demo.jsonl ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {"name": "Bidder 1", "model_name": "gpt-3.5-turbo-0613", "budget": 20000, "desire": "maximize_profit", "plan_strategy": "adaptive", "temperature": 0.7, "overestimate_percent": 10, "correct_belief": true, "enable_learning": true}
2
+ {"name": "Bidder 2", "model_name": "gpt-3.5-turbo-0613", "budget": 20000, "desire": "maximize_items", "plan_strategy": "adaptive", "temperature": 0.7, "overestimate_percent": 10, "correct_belief": true, "enable_learning": true}
3
+ {"name": "Bidder 3", "model_name": "gpt-3.5-turbo-0613", "budget": 20000, "desire": "maximize_profit", "plan_strategy": "adaptive", "temperature": 0.7, "overestimate_percent": 10, "correct_belief": true, "enable_learning": true}
4
+ {"name": "Bidder 4", "model_name": "gpt-3.5-turbo-0613", "budget": 20000, "desire": "maximize_items", "plan_strategy": "adaptive", "temperature": 0.7, "overestimate_percent": 10, "correct_belief": true, "enable_learning": true}
data/items_demo.jsonl ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name": "Widget A", "price": 1000, "desc": "A widget for all your needs", "id": 1, "true_value": 2000}
2
+ {"name": "Gadget B", "price": 1000, "desc": "A gadget with all the latest features", "id": 2, "true_value": 2000}
3
+ {"name": "Thingamajig C", "price": 1000, "desc": "A little thing that is sure to impress", "id": 3, "true_value": 2000}
4
+ {"name": "Doodad D", "price": 1000, "desc": "A durable doodad that will last for years", "id": 4, "true_value": 2000}
5
+ {"name": "Equipment E", "price": 5000, "desc": "A piece of equipment for any tough job", "id": 5, "true_value": 10000}
6
+ {"name": "Gizmo F", "price": 1000, "desc": "A gizmo that will surprise and delight", "id": 6, "true_value": 2000}
7
+ {"name": "Implement G", "price": 1000, "desc": "A implement for everyday tasks", "id": 7, "true_value": 2000}
8
+ {"name": "Apparatus H", "price": 1000, "desc": "An apparatus for specialized operations", "id": 8, "true_value": 2000}
9
+ {"name": "Contraption I", "price": 1000, "desc": "A contraption that sparks creativity", "id": 9, "true_value": 2000}
10
+ {"name": "Mechanism J", "price": 5000, "desc": "A mechanism for repetitive tasks", "id": 10, "true_value": 10000}
11
+ {"name": "Tool K", "price": 1000, "desc": "A tool for complex projects", "id": 11, "true_value": 2000}
12
+ {"name": "Device L", "price": 1000, "desc": "A device that enhances performance", "id": 12, "true_value": 2000}
13
+ {"name": "Instrument M", "price": 1000, "desc": "A instrument for precise measurements", "id": 13, "true_value": 2000}
14
+ {"name": "Utensil N", "price": 1000, "desc": "A utensil for dining and cooking", "id": 14, "true_value": 2000}
15
+ {"name": "Appliance O", "price": 1000, "desc": "A appliance for everyday household tasks", "id": 15, "true_value": 2000}
16
+ {"name": "Machine P", "price": 5000, "desc": "A machine for automated tasks", "id": 16, "true_value": 10000}
17
+ {"name": "Unit Q", "price": 1000, "desc": "A unit for individual tasks", "id": 17, "true_value": 2000}
18
+ {"name": "Element R", "price": 5000, "desc": "A element for scientific investigations", "id": 18, "true_value": 10000}
19
+ {"name": "Component S", "price": 1000, "desc": "A component for assembly and repair", "id": 19, "true_value": 2000}
20
+ {"name": "Piece T", "price": 1000, "desc": "A piece for art and craft projects", "id": 20, "true_value": 2000}
21
+ {"name": "Object U", "price": 1000, "desc": "An object for miscellaneous uses", "id": 21, "true_value": 2000}
22
+ {"name": "Item V", "price": 1000, "desc": "An item for versatile applications", "id": 22, "true_value": 2000}
23
+ {"name": "Product W", "price": 1000, "desc": "A product designed for efficiency", "id": 23, "true_value": 2000}
24
+ {"name": "Accessory X", "price": 1000, "desc": "An accessory to complement any outfit", "id": 24, "true_value": 2000}
25
+ {"name": "Module Y", "price": 1000, "desc": "A module for modular systems", "id": 25, "true_value": 2000}
26
+ {"name": "Entity Z", "price": 1000, "desc": "An entity with unique properties", "id": 26, "true_value": 2000}
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ openai>=0.27.8
2
+ langchain>=0.0.234
3
+ anthropic>=0.3.10
4
+ gradio
5
+ pydantic
6
+ coloredlogs
7
+ ujson
8
+ tiktoken
9
+ tqdm
10
+ inflect
11
+ vertexai
12
+ google-cloud-aiplatform>=1.28.1
13
+ torch
14
+ pygments
15
+ matplotlib
16
+ transformers
17
+ trueskill
18
+ seaborn
19
+ vllm
20
+ google-generativeai
src/auctioneer_base.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from typing import List, Dict
3
+ from langchain.prompts import PromptTemplate
4
+ from langchain.chat_models import ChatOpenAI
5
+ from langchain.callbacks import get_openai_callback
6
+ from pydantic import BaseModel
7
+ from collections import defaultdict
8
+ from langchain.schema import (
9
+ AIMessage,
10
+ HumanMessage,
11
+ SystemMessage
12
+ )
13
+ import random
14
+ import inflect
15
+ from .bidder_base import Bidder
16
+ from .human_bidder import HumanBidder
17
+ from .item_base import Item
18
+ from .prompt_base import PARSE_BID_INSTRUCTION
19
+
20
+ p = inflect.engine()
21
+
22
+
23
+ class Auctioneer(BaseModel):
24
+ enable_discount: bool = False
25
+ items: List[Item] = []
26
+ cur_item: Item = None
27
+ highest_bidder: Bidder = None
28
+ highest_bid: int = -1
29
+ bidding_history = defaultdict(list) # history about the bidding war of one item
30
+ items_queue: List[Item] = [] # updates when a item is taken.
31
+ auction_logs = defaultdict(list) # history about the bidding war of all items
32
+ openai_cost = 0
33
+ prev_round_max_bid: int = -1
34
+ min_bid: int = 0
35
+ fail_to_sell = False
36
+ min_markup_pct = 0.1
37
+
38
+ class Config:
39
+ arbitrary_types_allowed = True
40
+
41
+ def init_items(self, items: List[Item]):
42
+ for item in items:
43
+ # reset discounted price
44
+ item.reset_price()
45
+ self.items = items
46
+ self.items_queue = items.copy()
47
+
48
+ def summarize_items_info(self):
49
+ desc = ''
50
+ for item in self.items:
51
+ desc += f"- {item.get_desc()}\n"
52
+ return desc.strip()
53
+
54
+ def present_item(self):
55
+ cur_item = self.items_queue.pop(0)
56
+ self.cur_item = cur_item
57
+ return cur_item
58
+
59
+ def shuffle_items(self):
60
+ random.shuffle(self.items)
61
+ self.items_queue = self.items.copy()
62
+
63
+ def record_bid(self, bid_info: dict, bid_round: int):
64
+ '''
65
+ Save the bidding history for each round, log the highest bidder and highest bidding
66
+ '''
67
+ # bid_info: {'bidder': xxx, 'bid': xxx, 'raw_msg': xxx}
68
+ self.bidding_history[bid_round].append(bid_info)
69
+ for hist in self.bidding_history[bid_round]:
70
+ if hist['bid'] > 0:
71
+ if self.highest_bid < hist['bid']:
72
+ self.highest_bid = hist['bid']
73
+ self.highest_bidder = hist['bidder']
74
+ elif self.highest_bid == hist['bid']:
75
+ # random if there's a tie
76
+ self.highest_bidder = random.choice([self.highest_bidder, hist['bidder']])
77
+ self.auction_logs[f"{self.cur_item.get_desc()}"].append(
78
+ {'bidder': bid_info['bidder'],
79
+ 'bid': bid_info['bid'],
80
+ 'bid_round': bid_round})
81
+
82
+ def _biddings_to_string(self, bid_round: int):
83
+ '''
84
+ Return a string that summarizes the bidding history in a round
85
+ '''
86
+ # bid_hist_text = '' if bid_round == 0 else f'- {self.highest_bidder}: ${self.highest_bid}\n'
87
+ bid_hist_text = ''
88
+ for js in self.bidding_history[bid_round]:
89
+ if js['bid'] < 0:
90
+ bid_hist_text += f"- {js['bidder']} withdrew\n"
91
+ else:
92
+ bid_hist_text += f"- {js['bidder']}: ${js['bid']}\n"
93
+ return bid_hist_text.strip()
94
+
95
+ def all_bidding_history_to_string(self):
96
+ bid_hist_text = ''
97
+ for bid_round in self.bidding_history:
98
+ bid_hist_text += f"Round {bid_round}:\n{self._biddings_to_string(bid_round)}\n\n"
99
+ return bid_hist_text.strip()
100
+
101
+ def ask_for_bid(self, bid_round: int):
102
+ '''
103
+ Ask for bid, return the message to be sent to bidders
104
+ '''
105
+ if self.highest_bidder is None:
106
+ if bid_round > 0:
107
+ msg = f"Seeing as we've had no takers at the initial price, we're going to lower the starting bid to ${self.cur_item.price} for {self.cur_item.name} to spark some interest! Do I have any takers?"
108
+ else:
109
+ remaining_items = [self.cur_item.name] + [item.name for item in self.items_queue]
110
+ msg = f"Attention, bidders! {len(remaining_items)} item(s) left, they are: {', '.join(remaining_items)}.\n\nNow, please bid on {self.cur_item}. The starting price for bidding for {self.cur_item} is ${self.cur_item.price}. Anyone interested in this item?"
111
+ else:
112
+ bidding_history = self._biddings_to_string(bid_round - 1)
113
+ msg = f"Thank you! This is the {p.ordinal(bid_round)} round of bidding for this item:\n{bidding_history}\n\nNow we have ${self.highest_bid} from {self.highest_bidder.name} for {self.cur_item.name}. The minimum increase over this highest bid is ${int(self.cur_item.price * self.min_markup_pct)}. Do I have any advance on ${self.highest_bid}?"
114
+ return msg
115
+
116
+ def ask_for_rebid(self, fail_msg: str, bid_price: int):
117
+ return f"Your bid of ${bid_price} failed, because {fail_msg}: You must reconsider your bid."
118
+
119
+ def get_hammer_msg(self):
120
+ if self.highest_bidder is None:
121
+ return f"Since no one bid on {self.cur_item.name}, we'll move on to the next item."
122
+ else:
123
+ return f"Sold! {self.cur_item} to {self.highest_bidder} at ${self.highest_bid}! The true value for {self.cur_item} is ${self.cur_item.true_value}."# Thus {self.highest_bidder}'s profit by winning this item is ${self.cur_item.true_value - self.highest_bid}."
124
+
125
+ def check_hammer(self, bid_round: int):
126
+ # check if the item is sold
127
+ self.fail_to_sell = False
128
+ num_bid = self._num_bids_in_round(bid_round)
129
+
130
+ # highest_bidder has already been updated in record_bid().
131
+ # so when num_bid == 0 & highest_bidder is None, it means no one bid on this item
132
+ if self.highest_bidder is None:
133
+ if num_bid == 0:
134
+ # failed to sell, as there is no highest bidder
135
+ self.fail_to_sell = True
136
+ if self.enable_discount and bid_round < 3:
137
+ # lower the starting price by 50%. discoutn only applies to the first 3 rounds
138
+ self.cur_item.lower_price(0.5)
139
+ is_sold = False
140
+ else:
141
+ is_sold = True
142
+ else:
143
+ # won't happen
144
+ raise ValueError(f"highest_bidder is None but num_bid is {num_bid}")
145
+ else:
146
+ if self.prev_round_max_bid < 0 and num_bid == 1:
147
+ # only one bidder in the first round
148
+ is_sold = True
149
+ else:
150
+ self.prev_round_max_bid = self.highest_bid
151
+ is_sold = self._num_bids_in_round(bid_round) == 0
152
+ return is_sold
153
+
154
+ def _num_bids_in_round(self, bid_round: int):
155
+ # check if there is no bid in the current round
156
+ cnt = 0
157
+ for hist in self.bidding_history[bid_round]:
158
+ if hist['bid'] > 0:
159
+ cnt += 1
160
+ return cnt
161
+
162
+ def hammer_fall(self):
163
+ print(f'* Sold! {self.cur_item} (${self.cur_item.true_value}) goes to {self.highest_bidder} at ${self.highest_bid}.')
164
+ self.auction_logs[f"{self.cur_item.get_desc()}"].append({
165
+ 'bidder': self.highest_bidder,
166
+ 'bid': f"{self.highest_bid} (${self.cur_item.true_value})", # no need for the first $, as it will be added in the self.log()
167
+ 'bid_round': 'Hammer price (true value)'})
168
+ self.cur_item = None
169
+ self.highest_bidder = None
170
+ self.highest_bid = -1
171
+ self.bidding_history = defaultdict(list)
172
+ self.prev_round_max_bid = -1
173
+ self.fail_to_sell = False
174
+
175
+ def end_auction(self):
176
+ return len(self.items_queue) == 0
177
+
178
+ def gather_all_status(self, bidders: List[Bidder]):
179
+ status = {}
180
+ for bidder in bidders:
181
+ status[bidder.name] = {
182
+ 'profit': bidder.profit,
183
+ 'items_won': bidder.items_won
184
+ }
185
+ return status
186
+
187
+ def parse_bid(self, text: str):
188
+ prompt = PARSE_BID_INSTRUCTION.format(response=text)
189
+ with get_openai_callback() as cb:
190
+ llm = ChatOpenAI(model='gpt-3.5-turbo-0613', temperature=0)
191
+ result = llm([HumanMessage(content=prompt)]).content
192
+ self.openai_cost += cb.total_cost
193
+
194
+ bid_number = re.findall(r'\$?\d+', result.replace(',', ''))
195
+ # find number in the result
196
+ if '-1' in result:
197
+ return -1
198
+ elif len(bid_number) > 0:
199
+ return int(bid_number[-1].replace('$', ''))
200
+ else:
201
+ print('* Rebid:', text)
202
+ return None
203
+
204
+ def log(self, bidder_personal_reports: list = [], show_model_name=True):
205
+ ''' example
206
+ Apparatus H, starting at $1000.
207
+
208
+ 1st bid:
209
+ Bidder 1 (gpt-3.5-turbo-16k-0613): $1200
210
+ Bidder 2 (gpt-3.5-turbo-16k-0613): $1100
211
+ Bidder 3 (gpt-3.5-turbo-16k-0613): Withdrawn
212
+ Bidder 4 (gpt-3.5-turbo-16k-0613): $1200
213
+
214
+ 2nd bid:
215
+ Bidder 1 (gpt-3.5-turbo-16k-0613): Withdrawn
216
+ Bidder 2 (gpt-3.5-turbo-16k-0613): Withdrawn
217
+
218
+ Hammer price:
219
+ Bidder 4 (gpt-3.5-turbo-16k-0613): $1200
220
+ '''
221
+ markdown_output = "## Auction Log\n\n"
222
+ for i, (item, bids) in enumerate(self.auction_logs.items()):
223
+ markdown_output += f"### {i+1}. {item}\n\n"
224
+ cur_bid_round = -1
225
+ for i, bid in enumerate(bids):
226
+ if bid['bid_round'] != cur_bid_round:
227
+ cur_bid_round = bid['bid_round']
228
+ if isinstance(bid['bid_round'], int):
229
+ markdown_output += f"\n#### {p.ordinal(bid['bid_round']+1)} bid:\n\n"
230
+ else:
231
+ markdown_output += f"\n#### {bid['bid_round']}:\n\n"
232
+ bid_price = f"${bid['bid']}" if bid['bid'] != -1 else 'Withdrew'
233
+ if isinstance(bid['bidder'], Bidder) or isinstance(bid['bidder'], HumanBidder):
234
+ if show_model_name:
235
+ markdown_output += f"* {bid['bidder']} ({bid['bidder'].model_name}): {bid_price}\n"
236
+ else:
237
+ markdown_output += f"* {bid['bidder']}: {bid_price}\n"
238
+ else:
239
+ markdown_output += f"* None bid\n"
240
+ markdown_output += "\n"
241
+
242
+ if len(bidder_personal_reports) != 0:
243
+ markdown_output += f"\n## Personal Report"
244
+ for report in bidder_personal_reports:
245
+ markdown_output += f"\n\n{report}"
246
+ return markdown_output.strip()
247
+
248
+ def finish_auction(self):
249
+ self.auction_logs = defaultdict(list)
250
+ self.cur_item = None
251
+ self.highest_bidder = None
252
+ self.highest_bid = -1
253
+ self.bidding_history = defaultdict(list)
254
+ self.items_queue = []
255
+ self.items = []
256
+ self.prev_round_max_bid = -1
257
+ self.fail_to_sell = False
258
+ self.min_bid = 0
259
+
src/bidder_base.py ADDED
@@ -0,0 +1,1031 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from langchain.base_language import BaseLanguageModel
3
+ from langchain.schema import (
4
+ AIMessage,
5
+ HumanMessage,
6
+ SystemMessage
7
+ )
8
+ from langchain.chat_models import (
9
+ ChatAnthropic,
10
+ ChatOpenAI,
11
+ ChatVertexAI,
12
+ ChatGooglePalm,
13
+ )
14
+ import vertexai
15
+ from langchain.input import get_colored_text
16
+ from langchain.callbacks import get_openai_callback
17
+ from collections import defaultdict
18
+ from pydantic import BaseModel
19
+ import queue
20
+ import threading
21
+ import os
22
+ import random
23
+ import time
24
+ import ujson as json
25
+ import matplotlib.pyplot as plt
26
+ from .item_base import Item, item_list_equal
27
+ from .prompt_base import (
28
+ AUCTION_HISTORY,
29
+ # INSTRUCT_OBSERVE_TEMPLATE,
30
+ _LEARNING_STATEMENT,
31
+ INSTRUCT_PLAN_TEMPLATE,
32
+ INSTRUCT_BID_TEMPLATE,
33
+ INSTRUCT_SUMMARIZE_TEMPLATE,
34
+ INSTRUCT_LEARNING_TEMPLATE,
35
+ INSTRUCT_REPLAN_TEMPLATE,
36
+ SYSTEM_MESSAGE,
37
+ )
38
+ import sys
39
+ sys.path.append('..')
40
+ from utils import LoadJsonL, extract_jsons_from_text, extract_numbered_list, trace_back
41
+
42
+
43
+ # DESIRE_DESC = {
44
+ # 'default': "Your goal is to fully utilize your budget while actively participating in the auction",
45
+ # 'maximize_profit': "Your goal is to maximize your overall profit, and fully utilize your budget while actively participating in the auction. This involves strategic bidding to win items for less than their true value, thereby ensuring the difference between the price paid and the item's value is as large as possible",
46
+ # 'maximize_items': "Your goal is to win as many items as possible, and fully utilize your budget while actively participating in the auction. While keeping your budget in mind, you should aim to participate broadly across different items, striving to be the highest bidder more often than not",
47
+ # } # remove period at the end of each description
48
+
49
+
50
+ DESIRE_DESC = {
51
+ 'maximize_profit': "Your primary objective is to secure the highest profit at the end of this auction, compared to all other bidders",
52
+ 'maximize_items': "Your primary objective is to win the highest number of items at the end of this auction, compared to everyone else",
53
+ }
54
+
55
+
56
+ class Bidder(BaseModel):
57
+ name: str
58
+ model_name: str
59
+ budget: int
60
+ desire: str
61
+ plan_strategy: str
62
+ temperature: float = 0.7
63
+ overestimate_percent: int = 10
64
+ correct_belief: bool
65
+ enable_learning: bool = False
66
+
67
+ llm: BaseLanguageModel = None
68
+ openai_cost = 0
69
+ llm_token_count = 0
70
+
71
+ verbose: bool = False
72
+ auction_hash: str = ''
73
+
74
+ system_message: str = ''
75
+ original_budget: int = 0
76
+
77
+ # working memory
78
+ profit: int = 0
79
+ cur_item_id = 0
80
+ items: list = []
81
+ dialogue_history: list = [] # for gradio UI display
82
+ llm_prompt_history: list = [] # for tracking llm calling
83
+ items_won = []
84
+ bid_history: list = [] # history of the bidding of a single item
85
+ plan_instruct: str = '' # instruction for planning
86
+ cur_plan: str = '' # current plan
87
+ status_quo: dict = {} # belief of budget and profit, self and others
88
+ withdraw: bool = False # state of withdraw
89
+ learnings: str = '' # learnings from previous biddings. If given, then use it to guide the rest of the auction.
90
+ max_bid_cnt: int = 4 # Rule Bidder: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid)
91
+ rule_bid_cnt: int = 0 # Rule Bidder: count of bids on one item
92
+
93
+ # belief tracking
94
+ failed_bid_cnt: int = 0 # count of failed bids (overspending)
95
+ total_bid_cnt: int = 0 # count of total bids
96
+ self_belief_error_cnt: int = 0
97
+ total_self_belief_cnt: int = 0
98
+ other_belief_error_cnt: int = 0
99
+ total_other_belief_cnt: int = 0
100
+
101
+ engagement_count: int = 0
102
+ budget_history = []
103
+ profit_history = []
104
+ budget_error_history = []
105
+ profit_error_history = []
106
+ win_bid_error_history = []
107
+ engagement_history = defaultdict(int)
108
+ all_bidders_status = {} # track others' profit
109
+ changes_of_plan = []
110
+
111
+ # not used
112
+ input_box: str = None
113
+ need_input = False
114
+ semaphore = 0
115
+
116
+ class Config:
117
+ arbitrary_types_allowed = True
118
+
119
+ def __repr__(self):
120
+ return self.name
121
+
122
+ def __str__(self):
123
+ return self.name
124
+
125
+ @classmethod
126
+ def create(cls, **data):
127
+ instance = cls(**data)
128
+ instance._post_init()
129
+ return instance
130
+
131
+ def _post_init(self):
132
+ self.original_budget = self.budget
133
+ self.system_message = SYSTEM_MESSAGE.format(
134
+ name=self.name,
135
+ desire_desc=DESIRE_DESC[self.desire],
136
+ )
137
+ self._parse_llm()
138
+ self.dialogue_history += [
139
+ SystemMessage(content=self.system_message),
140
+ AIMessage(content='')
141
+ ]
142
+ self.budget_history.append(self.budget)
143
+ self.profit_history.append(self.profit)
144
+
145
+ def _parse_llm(self):
146
+ if 'gpt-' in self.model_name:
147
+ self.llm = ChatOpenAI(model=self.model_name, temperature=self.temperature, max_retries=30, request_timeout=1200)
148
+ elif 'claude' in self.model_name:
149
+ self.llm = ChatAnthropic(model=self.model_name, temperature=self.temperature, default_request_timeout=1200)
150
+ elif 'bison' in self.model_name:
151
+ self.llm = ChatGooglePalm(model_name=f'models/{self.model_name}', temperature=self.temperature)
152
+ elif 'rule' in self.model_name or 'human' in self.model_name:
153
+ self.llm = None
154
+ else:
155
+ raise NotImplementedError(self.model_name)
156
+
157
+ # def _rotate_openai_org(self):
158
+ # # use two organizations to avoid rate limit
159
+ # if os.environ.get('OPENAI_ORGANIZATION_1') and os.environ.get('OPENAI_ORGANIZATION_2'):
160
+ # return random.choice([os.environ.get('OPENAI_ORGANIZATION_1'), os.environ.get('OPENAI_ORGANIZATION_2')])
161
+ # else:
162
+ # return None
163
+
164
+ def _run_llm_standalone(self, messages: list):
165
+
166
+ with get_openai_callback() as cb:
167
+ for i in range(6):
168
+ try:
169
+ input_token_num = self.llm.get_num_tokens_from_messages(messages)
170
+ if 'claude' in self.model_name: # anthropic's claude
171
+ result = self.llm(messages, max_tokens_to_sample=2048)
172
+ elif 'bison' in self.model_name: # google's palm-2
173
+ max_tokens = min(max(3900 - input_token_num, 192), 2048)
174
+ if isinstance(self.llm, ChatVertexAI):
175
+ result = self.llm(messages, max_output_tokens=max_tokens)
176
+ else:
177
+ result = self.llm(messages)
178
+ elif 'gpt' in self.model_name: # openai
179
+ if 'gpt-3.5-turbo' in self.model_name and '16k' not in self.model_name:
180
+ max_tokens = max(3900 - input_token_num, 192)
181
+ else:
182
+ # gpt-4
183
+ # self.llm.openai_organization = self._rotate_openai_org()
184
+ max_tokens = max(8000 - input_token_num, 192)
185
+ result = self.llm(messages, max_tokens=max_tokens)
186
+ elif 'llama' in self.model_name.lower():
187
+ raise NotImplementedError
188
+ else:
189
+ raise NotImplementedError
190
+ break
191
+ except:
192
+ print(f'Retrying for {self.model_name} ({i+1}/6), wait for {2**(i+1)} sec...')
193
+ time.sleep(2**(i+1))
194
+ self.openai_cost += cb.total_cost
195
+ self.llm_token_count = self.llm.get_num_tokens_from_messages(messages)
196
+ return result.content
197
+
198
+ def _get_estimated_value(self, item):
199
+ value = item.true_value * (1 + self.overestimate_percent / 100)
200
+ return int(value)
201
+
202
+ def _get_cur_item(self, key=None):
203
+ if self.cur_item_id < len(self.items):
204
+ if key is not None:
205
+ return self.items[self.cur_item_id].__dict__[key]
206
+ else:
207
+ return self.items[self.cur_item_id]
208
+ else:
209
+ return 'no item left'
210
+
211
+ def _get_next_item(self, key=None):
212
+ if self.cur_item_id + 1 < len(self.items):
213
+ if key is not None:
214
+ return self.items[self.cur_item_id + 1].__dict__[key]
215
+ else:
216
+ return self.items[self.cur_item_id + 1]
217
+ else:
218
+ return 'no item left'
219
+
220
+ def _get_remaining_items(self, as_str=False):
221
+ remain_items = self.items[self.cur_item_id + 1:]
222
+ if as_str:
223
+ return ', '.join([item.name for item in remain_items])
224
+ else:
225
+ return remain_items
226
+
227
+ def _get_items_value_str(self, items: List[Item]):
228
+ if not isinstance(items, list):
229
+ items = [items]
230
+ items_info = ''
231
+ for i, item in enumerate(items):
232
+ estimated_value = self._get_estimated_value(item)
233
+ _info = f"{i+1}. {item}, starting price is ${item.price}. Your estimated value for this item is ${estimated_value}.\n"
234
+ items_info += _info
235
+ return items_info.strip()
236
+
237
+ # ********** Main Instructions and Functions ********** #
238
+
239
+ def learn_from_prev_auction(self, past_learnings, past_auction_log):
240
+ if not self.enable_learning or 'rule' in self.model_name or 'human' in self.model_name:
241
+ return ''
242
+
243
+ instruct_learn = INSTRUCT_LEARNING_TEMPLATE.format(
244
+ past_auction_log=past_auction_log,
245
+ past_learnings=past_learnings)
246
+
247
+ result = self._run_llm_standalone([HumanMessage(content=instruct_learn)])
248
+ self.dialogue_history += [
249
+ HumanMessage(content=instruct_learn),
250
+ AIMessage(content=result),
251
+ ]
252
+ self.llm_prompt_history.append({
253
+ 'messages': [{x.type: x.content} for x in [HumanMessage(content=instruct_learn)]],
254
+ 'result': result,
255
+ 'tag': 'learn_0'
256
+ })
257
+
258
+ self.learnings = '\n'.join(extract_numbered_list(result))
259
+ if self.learnings != '':
260
+ self.system_message += f"\n\nHere are your key learning points and practical tips from a previous auction. You can use them to guide this auction:\n```\n{self.learnings}\n```"
261
+
262
+ if self.verbose:
263
+ print(f"Learn from previous auction: {self.name} ({self.model_name}).")
264
+ return result
265
+
266
+ def _choose_items(self, budget, items: List[Item]):
267
+ '''
268
+ Choose items within budget for rule bidders.
269
+ Cheap ones first if maximize_items, expensive ones first if maximize_profit.
270
+ '''
271
+ sorted_items = sorted(items, key=lambda x: self._get_estimated_value(x),
272
+ reverse=self.desire == 'maximize_profit')
273
+
274
+ chosen_items = []
275
+ i = 0
276
+ while budget >= 0 and i < len(sorted_items):
277
+ item = sorted_items[i]
278
+ if item.price <= budget:
279
+ chosen_items.append(item)
280
+ budget -= item.price
281
+ i += 1
282
+
283
+ return chosen_items
284
+
285
+ def get_plan_instruct(self, items: List[Item]):
286
+ self.items = items
287
+ plan_instruct = INSTRUCT_PLAN_TEMPLATE.format(
288
+ bidder_name=self.name,
289
+ budget=self.budget,
290
+ item_num=len(items),
291
+ items_info=self._get_items_value_str(items),
292
+ desire_desc=DESIRE_DESC[self.desire],
293
+ learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
294
+ )
295
+ return plan_instruct
296
+
297
+ def init_plan(self, plan_instruct: str):
298
+ '''
299
+ Plan for bidding with auctioneer's instruction and items information for customize estimated value.
300
+ plan = plan(system_message, instruct_plan)
301
+ '''
302
+ if 'rule' in self.model_name:
303
+ # self.cur_plan = ', '.join([x.name for x in self._choose_items(self.budget, self.items)])
304
+ # self.dialogue_history += [
305
+ # HumanMessage(content=plan_instruct),
306
+ # AIMessage(content=self.cur_plan),
307
+ # ]
308
+ # return self.cur_plan
309
+ return ''
310
+
311
+ self.status_quo = {
312
+ 'remaining_budget': self.budget,
313
+ 'total_profits': {bidder: 0 for bidder in self.all_bidders_status.keys()},
314
+ 'winning_bids': {bidder: {} for bidder in self.all_bidders_status.keys()},
315
+ }
316
+
317
+ if self.plan_strategy == 'none':
318
+ self.plan_instruct = ''
319
+ self.cur_plan = ''
320
+ return None
321
+
322
+ system_msg = SystemMessage(content=self.system_message)
323
+ plan_msg = HumanMessage(content=plan_instruct)
324
+ messages = [system_msg, plan_msg]
325
+ result = self._run_llm_standalone(messages)
326
+
327
+ if self.verbose:
328
+ print(get_colored_text(plan_msg.content, 'red'))
329
+ print(get_colored_text(result, 'green'))
330
+
331
+ self.dialogue_history += [
332
+ plan_msg,
333
+ AIMessage(content=result),
334
+ ]
335
+ self.llm_prompt_history.append({
336
+ 'messages': [{x.type: x.content} for x in messages],
337
+ 'result': result,
338
+ 'tag': 'plan_0'
339
+ })
340
+ self.cur_plan = result
341
+ self.plan_instruct = plan_instruct
342
+
343
+ self.changes_of_plan.append([
344
+ f"{self.cur_item_id} (Initial)",
345
+ False,
346
+ json.dumps(extract_jsons_from_text(result)[-1]),
347
+ ])
348
+
349
+ if self.verbose:
350
+ print(f"Plan: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
351
+ return result
352
+
353
+ def get_rebid_instruct(self, auctioneer_msg: str):
354
+ self.dialogue_history += [
355
+ HumanMessage(content=auctioneer_msg),
356
+ AIMessage(content='')
357
+ ]
358
+ return auctioneer_msg
359
+
360
+ def get_bid_instruct(self, auctioneer_msg: str, bid_round: int):
361
+ auctioneer_msg = auctioneer_msg.replace(self.name, f'You ({self.name})')
362
+
363
+ bid_instruct = INSTRUCT_BID_TEMPLATE.format(
364
+ auctioneer_msg=auctioneer_msg,
365
+ bidder_name=self.name,
366
+ cur_item=self._get_cur_item(),
367
+ estimated_value=self._get_estimated_value(self._get_cur_item()),
368
+ desire_desc=DESIRE_DESC[self.desire],
369
+ learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
370
+ )
371
+ if bid_round == 0:
372
+ if self.plan_strategy in ['static', 'none']:
373
+ # if static planner, then no replanning is needed. status quo is updated in replanning. thus need to add status quo in bid instruct.
374
+ bid_instruct = f"""The status quo of this auction so far is:\n"{json.dumps(self.status_quo, indent=4)}"\n\n{bid_instruct}\n---\n"""
375
+ else:
376
+ bid_instruct = f'Now, the auctioneer says: "{auctioneer_msg}"'
377
+
378
+ self.dialogue_history += [
379
+ HumanMessage(content=bid_instruct),
380
+ AIMessage(content='')
381
+ ]
382
+ return bid_instruct
383
+
384
+ def bid_rule(self, cur_bid: int, min_markup_pct: float = 0.1):
385
+ '''
386
+ :param cur_bid: current highest bid
387
+ :param min_markup_pct: minimum percentage for bid increase
388
+ :param max_bid_cnt: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid)
389
+ '''
390
+ # dialogue history already got bid_instruction.
391
+ cur_item = self._get_cur_item()
392
+
393
+ if cur_bid <= 0:
394
+ next_bid = cur_item.price
395
+ else:
396
+ next_bid = cur_bid + min_markup_pct * cur_item.price
397
+
398
+ if self.budget - next_bid >= 0 and self.rule_bid_cnt < self.max_bid_cnt:
399
+ msg = int(next_bid)
400
+ self.rule_bid_cnt += 1
401
+ else:
402
+ msg = -1
403
+
404
+ content = f'The current highest bid for {cur_item.name} is ${cur_bid}. '
405
+ content += "I'm out!" if msg < 0 else f"I bid ${msg}! (Rule generated)"
406
+ self.dialogue_history += [
407
+ HumanMessage(content=''),
408
+ AIMessage(content=content)
409
+ ]
410
+
411
+ return msg
412
+
413
+ def bid(self, bid_instruct):
414
+ '''
415
+ Bid for an item with auctioneer's instruction and bidding history.
416
+ bid_history = bid(system_message, instruct_plan, plan, bid_history)
417
+ '''
418
+ if self.model_name == 'rule':
419
+ return ''
420
+
421
+ bid_msg = HumanMessage(content=bid_instruct)
422
+
423
+ if self.plan_strategy == 'none':
424
+ messages = [SystemMessage(content=self.system_message)]
425
+ else:
426
+ messages = [SystemMessage(content=self.system_message),
427
+ HumanMessage(content=self.plan_instruct),
428
+ AIMessage(content=self.cur_plan)]
429
+
430
+ self.bid_history += [bid_msg]
431
+ messages += self.bid_history
432
+
433
+ result = self._run_llm_standalone(messages)
434
+
435
+ self.bid_history += [AIMessage(content=result)]
436
+
437
+ self.dialogue_history += [
438
+ HumanMessage(content=''),
439
+ AIMessage(content=result)
440
+ ]
441
+
442
+ self.llm_prompt_history.append({
443
+ 'messages': [{x.type: x.content} for x in messages],
444
+ 'result': result,
445
+ 'tag': f'bid_{self.cur_item_id}'
446
+ })
447
+
448
+ if self.verbose:
449
+ print(get_colored_text(bid_instruct, 'yellow'))
450
+ print(get_colored_text(result, 'green'))
451
+
452
+ print(f"Bid: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
453
+ self.total_bid_cnt += 1
454
+
455
+ return result
456
+
457
+ def get_summarize_instruct(self, bidding_history: str, hammer_msg: str, win_lose_msg: str):
458
+ instruct = INSTRUCT_SUMMARIZE_TEMPLATE.format(
459
+ cur_item=self._get_cur_item(),
460
+ bidding_history=bidding_history,
461
+ hammer_msg=hammer_msg.strip(),
462
+ win_lose_msg=win_lose_msg.strip(),
463
+ bidder_name=self.name,
464
+ prev_status=self._status_json_to_text(self.status_quo),
465
+ )
466
+ return instruct
467
+
468
+ def summarize(self, instruct_summarize: str):
469
+ '''
470
+ Update belief/status quo
471
+ status_quo = summarize(system_message, bid_history, prev_status + instruct_summarize)
472
+ '''
473
+ self.budget_history.append(self.budget)
474
+ self.profit_history.append(self.profit)
475
+
476
+ if self.model_name == 'rule':
477
+ self.rule_bid_cnt = 0 # reset bid count for rule bidder
478
+ return ''
479
+
480
+ messages = [SystemMessage(content=self.system_message)]
481
+ # messages += self.bid_history
482
+ summ_msg = HumanMessage(content=instruct_summarize)
483
+ messages.append(summ_msg)
484
+
485
+ status_quo_text = self._run_llm_standalone(messages)
486
+
487
+ self.dialogue_history += [summ_msg, AIMessage(content=status_quo_text)]
488
+ self.bid_history += [summ_msg, AIMessage(content=status_quo_text)]
489
+
490
+ self.llm_prompt_history.append({
491
+ 'messages': [{x.type: x.content} for x in messages],
492
+ 'result': status_quo_text,
493
+ 'tag': f'summarize_{self.cur_item_id}'
494
+ })
495
+
496
+ cnt = 0
497
+ while cnt <= 3:
498
+ sanity_msg = self._sanity_check_status_json(extract_jsons_from_text(status_quo_text)[-1])
499
+ if sanity_msg == '':
500
+ # pass sanity check then track beliefs
501
+ consistency_msg = self._belief_tracking(status_quo_text)
502
+ else:
503
+ sanity_msg = f'- {sanity_msg}'
504
+ consistency_msg = ''
505
+
506
+ if sanity_msg != '' or (consistency_msg != '' and self.correct_belief):
507
+ err_msg = f"As {self.name}, here are some error(s) of your summary of the status JSON:\n{sanity_msg.strip()}\n{consistency_msg.strip()}\n\nPlease revise the status JSON based on the errors. Don't apologize. Just give me the revised status JSON.".strip()
508
+
509
+ # print(f"{self.name}: revising status quo for the {cnt} time:")
510
+ # print(get_colored_text(err_msg, 'green'))
511
+ # print(get_colored_text(status_quo_text, 'red'))
512
+
513
+ messages += [AIMessage(content=status_quo_text),
514
+ HumanMessage(content=err_msg)]
515
+ status_quo_text = self._run_llm_standalone(messages)
516
+ self.dialogue_history += [
517
+ HumanMessage(content=err_msg),
518
+ AIMessage(content=status_quo_text),
519
+ ]
520
+ cnt += 1
521
+ else:
522
+ break
523
+
524
+ self.status_quo = extract_jsons_from_text(status_quo_text)[-1]
525
+
526
+ if self.verbose:
527
+ print(get_colored_text(instruct_summarize, 'blue'))
528
+ print(get_colored_text(status_quo_text, 'green'))
529
+
530
+ print(f"Summarize: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
531
+
532
+ return status_quo_text
533
+
534
+ def get_replan_instruct(self):
535
+ instruct = INSTRUCT_REPLAN_TEMPLATE.format(
536
+ status_quo=self._status_json_to_text(self.status_quo),
537
+ remaining_items_info=self._get_items_value_str(self._get_remaining_items()),
538
+ bidder_name=self.name,
539
+ desire_desc=DESIRE_DESC[self.desire],
540
+ learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
541
+ )
542
+ return instruct
543
+
544
+ def replan(self, instruct_replan: str):
545
+ '''
546
+ plan = replan(system_message, instruct_plan, prev_plan, status_quo + (learning) + instruct_replan)
547
+ '''
548
+ if self.model_name == 'rule':
549
+ self.withdraw = False
550
+ self.cur_item_id += 1
551
+ return ''
552
+
553
+ if self.plan_strategy in ['none', 'static']:
554
+ self.bid_history = [] # clear bid history
555
+ self.cur_item_id += 1
556
+ self.withdraw = False
557
+ return 'Skip replanning for bidders with static or no plan.'
558
+
559
+ replan_msg = HumanMessage(content=instruct_replan)
560
+
561
+ messages = [SystemMessage(content=self.system_message),
562
+ HumanMessage(content=self.plan_instruct),
563
+ AIMessage(content=self.cur_plan)]
564
+ messages.append(replan_msg)
565
+
566
+ result = self._run_llm_standalone(messages)
567
+
568
+ new_plan_dict = extract_jsons_from_text(result)[-1]
569
+ cnt = 0
570
+ while len(new_plan_dict) == 0 and cnt < 2:
571
+ err_msg = 'Your response does not contain a JSON-format priority list for items. Please revise your plan.'
572
+ messages += [
573
+ AIMessage(content=result),
574
+ HumanMessage(content=err_msg),
575
+ ]
576
+ result = self._run_llm_standalone(messages)
577
+ new_plan_dict = extract_jsons_from_text(result)[-1]
578
+
579
+ self.dialogue_history += [
580
+ HumanMessage(content=err_msg),
581
+ AIMessage(content=result),
582
+ ]
583
+ cnt += 1
584
+
585
+ old_plan_dict = extract_jsons_from_text(self.cur_plan)[-1]
586
+ self.changes_of_plan.append([
587
+ f"{self.cur_item_id + 1} ({self._get_cur_item('name')})",
588
+ self._change_of_plan(old_plan_dict, new_plan_dict),
589
+ json.dumps(new_plan_dict)
590
+ ])
591
+
592
+ self.plan_instruct = instruct_replan
593
+ self.cur_plan = result
594
+ self.withdraw = False
595
+ self.bid_history = [] # clear bid history
596
+ self.cur_item_id += 1
597
+
598
+ self.dialogue_history += [
599
+ replan_msg,
600
+ AIMessage(content=result),
601
+ ]
602
+ self.llm_prompt_history.append({
603
+ 'messages': [{x.type: x.content} for x in messages],
604
+ 'result': result,
605
+ 'tag': f'plan_{self.cur_item_id}'
606
+ })
607
+
608
+ if self.verbose:
609
+ print(get_colored_text(instruct_replan, 'blue'))
610
+ print(get_colored_text(result, 'green'))
611
+
612
+ print(f"Replan: {self.name} ({self.model_name}).")
613
+ return result
614
+
615
+ def _change_of_plan(self, old_plan: dict, new_plan: dict):
616
+ for k in new_plan:
617
+ if new_plan[k] != old_plan.get(k, None):
618
+ return True
619
+ return False
620
+
621
+ # *********** Belief Tracking and Sanity Check *********** #
622
+
623
+ def bid_sanity_check(self, bid_price, prev_round_max_bid, min_markup_pct):
624
+ # can't bid more than budget or less than previous highest bid
625
+ if bid_price < 0:
626
+ msg = None
627
+ else:
628
+ min_bid_increase = int(min_markup_pct * self._get_cur_item('price'))
629
+ if bid_price > self.budget:
630
+ msg = f"you don't have insufficient budget (${self.budget} left)"
631
+ elif bid_price < self._get_cur_item('price'):
632
+ msg = f"your bid is lower than the starting bid (${self._get_cur_item('price')})"
633
+ elif bid_price < prev_round_max_bid + min_bid_increase:
634
+ msg = f"you must advance previous highest bid (${prev_round_max_bid}) by at least ${min_bid_increase} ({int(100 * min_markup_pct)}%)."
635
+ else:
636
+ msg = None
637
+ return msg
638
+
639
+ def rebid_for_failure(self, fail_instruct: str):
640
+ result = self.bid(fail_instruct)
641
+ self.failed_bid_cnt += 1
642
+ return result
643
+
644
+ def _sanity_check_status_json(self, data: dict):
645
+ if data == {}:
646
+ return "Error: No parsible JSON in your response. Possibly due to missing a closing curly bracket '}', or unpasible values (e.g., 'profit': 1000 + 400, instead of 'profit': 1400)."
647
+
648
+ # Check if all expected top-level keys are present
649
+ expected_keys = ["remaining_budget", "total_profits", "winning_bids"]
650
+ for key in expected_keys:
651
+ if key not in data:
652
+ return f"Error: Missing '{key}' field in the status JSON."
653
+
654
+ # Check if "remaining_budget" is a number
655
+ if not isinstance(data["remaining_budget"], (int, float)):
656
+ return "Error: 'remaining_budget' should be a number, and only about your remaining budget."
657
+
658
+ # Check if "total_profits" is a dictionary with numbers as values
659
+ if not isinstance(data["total_profits"], dict):
660
+ return "Error: 'total_profits' should be a dictionary of every bidder."
661
+ for bidder, profit in data["total_profits"].items():
662
+ if not isinstance(profit, (int, float)):
663
+ return f"Error: Profit for {bidder} should be a number."
664
+
665
+ # Check if "winning_bids" is a dictionary and that each bidder's entry is a dictionary with numbers
666
+ if not isinstance(data["winning_bids"], dict):
667
+ return "Error: 'winning_bids' should be a dictionary."
668
+ for bidder, bids in data["winning_bids"].items():
669
+ if not isinstance(bids, dict):
670
+ return f"Error: Bids for {bidder} should be a dictionary."
671
+ for item, amount in bids.items():
672
+ if not isinstance(amount, (int, float)):
673
+ return f"Error: Amount for {item} under {bidder} should be a number."
674
+
675
+ # If everything is fine
676
+ return ""
677
+
678
+ def _status_json_to_text(self, data: dict):
679
+ if 'rule' in self.model_name: return ''
680
+
681
+ # Extract and format remaining budget
682
+ structured_text = f"* Remaining Budget: ${data.get('remaining_budget', 'unknown')}\n\n"
683
+
684
+ # Extract and format total profits for each bidder
685
+ structured_text += "* Total Profits:\n"
686
+ if data.get('total_profits'):
687
+ for bidder, profit in data['total_profits'].items():
688
+ structured_text += f" * {bidder}: ${profit}\n"
689
+
690
+ # Extract and list the winning bids for each item by each bidder
691
+ structured_text += "\n* Winning Bids:\n"
692
+ if data.get('winning_bids'):
693
+ for bidder, bids in data['winning_bids'].items():
694
+ structured_text += f" * {bidder}:\n"
695
+ if bids:
696
+ for item, amount in bids.items():
697
+ structured_text += f" * {item}: ${amount}\n"
698
+ else:
699
+ structured_text += f" * No winning bids\n"
700
+
701
+ return structured_text.strip()
702
+
703
+ def _belief_tracking(self, status_text: str):
704
+ '''
705
+ Parse status quo and check if the belief is correct.
706
+ '''
707
+ belief_json = extract_jsons_from_text(status_text)[-1]
708
+ # {"remaining_budget": 8000, "total_profits": {"Bidder 1": 1300, "Bidder 2": 1800, "Bidder 3": 0}, "winning_bids": {"Bidder 1": {"Item 2": 1200, "Item 3": 1000}, "Bidder 2": {"Item 1": 2000}, "Bidder 3": {}}}
709
+ budget_belief = belief_json['remaining_budget']
710
+ profits_belief = belief_json['total_profits']
711
+ winning_bids = belief_json['winning_bids']
712
+
713
+ msg = ''
714
+ # track belief of budget
715
+ self.total_self_belief_cnt += 1
716
+ if budget_belief != self.budget:
717
+ msg += f'- Your belief of budget is wrong: you have ${self.budget} left, but you think you have ${budget_belief} left.\n'
718
+ self.self_belief_error_cnt += 1
719
+ self.budget_error_history.append([
720
+ self._get_cur_item('name'),
721
+ budget_belief,
722
+ self.budget,
723
+ ])
724
+
725
+ # track belief of profits
726
+ for bidder_name, profit in profits_belief.items():
727
+ if self.all_bidders_status.get(bidder_name) is None:
728
+ # due to a potentially unreasonable parsing
729
+ continue
730
+
731
+ if self.name in bidder_name:
732
+ bidder_name = self.name
733
+ self.total_self_belief_cnt += 1
734
+ else:
735
+ self.total_other_belief_cnt += 1
736
+
737
+ real_profit = self.all_bidders_status[bidder_name]['profit']
738
+
739
+ if profit != real_profit:
740
+ if self.name == bidder_name:
741
+ self.self_belief_error_cnt += 1
742
+ else:
743
+ self.other_belief_error_cnt += 1
744
+
745
+ msg += f'- Your belief of total profit of {bidder_name} is wrong: {bidder_name} has earned ${real_profit} so far, but you think {bidder_name} has earned ${profit}.\n'
746
+
747
+ # add to history
748
+ self.profit_error_history.append([
749
+ f"{bidder_name} ({self._get_cur_item('name')})",
750
+ profit,
751
+ real_profit
752
+ ])
753
+
754
+ # track belief of winning bids
755
+ for bidder_name, items_won_dict in winning_bids.items():
756
+ if self.all_bidders_status.get(bidder_name) is None:
757
+ # due to a potentially unreasonable parsing
758
+ continue
759
+
760
+ real_items_won = self.all_bidders_status[bidder_name]['items_won']
761
+ # items_won = [(item, bid_price), ...)]
762
+
763
+ items_won_list = list(items_won_dict.keys())
764
+ real_items_won_list = [str(x) for x, _ in real_items_won]
765
+
766
+ if self.name in bidder_name:
767
+ self.total_self_belief_cnt += 1
768
+ else:
769
+ self.total_other_belief_cnt += 1
770
+
771
+ if not item_list_equal(items_won_list, real_items_won_list):
772
+ if bidder_name == self.name:
773
+ self.self_belief_error_cnt += 1
774
+ _bidder_name = f'you'
775
+ else:
776
+ self.other_belief_error_cnt += 1
777
+ _bidder_name = bidder_name
778
+
779
+ msg += f"- Your belief of winning items of {bidder_name} is wrong: {bidder_name} won {real_items_won}, but you think {bidder_name} won {items_won_dict}.\n"
780
+
781
+ self.win_bid_error_history.append([
782
+ f"{_bidder_name} ({self._get_cur_item('name')})",
783
+ ', '.join(items_won_list),
784
+ ', '.join(real_items_won_list)
785
+ ])
786
+
787
+ return msg
788
+
789
+ def win_bid(self, item: Item, bid: int):
790
+ self.budget -= bid
791
+ self.profit += item.true_value - bid
792
+ self.items_won += [[item, bid]]
793
+ msg = f"Congratuations! You won {item} at ${bid}."# Now you have ${self.budget} left. Your total profit so far is ${self.profit}."
794
+ return msg
795
+
796
+ def lose_bid(self, item: Item):
797
+ return f"You lost {item}."# Now, you have ${self.budget} left. Your total profit so far is ${self.profit}."
798
+
799
+ # set the profit information of other bidders
800
+ def set_all_bidders_status(self, all_bidders_status: dict):
801
+ self.all_bidders_status = all_bidders_status.copy()
802
+
803
+ def set_withdraw(self, bid: int):
804
+ if bid < 0: # withdraw
805
+ self.withdraw = True
806
+ elif bid == 0: # enable discount and bid again
807
+ self.withdraw = False
808
+ else: # normal bid
809
+ self.withdraw = False
810
+ self.engagement_count += 1
811
+ self.engagement_history[self._get_cur_item('name')] += 1
812
+
813
+ # ****************** Logging ****************** #
814
+
815
+ # def _parse_hedging(self, plan: str): # deprecated
816
+ # prompt = PARSE_HEDGE_INSTRUCTION.format(
817
+ # item_name=self._get_cur_item(),
818
+ # plan=plan)
819
+
820
+ # with get_openai_callback() as cb:
821
+ # llm = ChatOpenAI(model='gpt-3.5-turbo-0613', temperature=0)
822
+ # result = llm([HumanMessage(content=prompt)]).content
823
+ # self.openai_cost += cb.total_cost
824
+ # # parse a number, which could be a digit
825
+ # hedge_percent = re.findall(r'\d+\.?\d*%', result)
826
+ # if len(hedge_percent) > 0:
827
+ # hedge_percent = hedge_percent[0].replace('%', '')
828
+ # else:
829
+ # hedge_percent = 0
830
+ # return float(hedge_percent)
831
+
832
+ def profit_report(self):
833
+ '''
834
+ Personal profit report at the end of an auction.
835
+ '''
836
+ msg = f"* {self.name}, starting with ${self.original_budget}, has won {len(self.items_won)} items in this auction, with a total profit of ${self.profit}.:\n"
837
+ profit = 0
838
+ for item, bid in self.items_won:
839
+ profit += item.true_value - bid
840
+ msg += f" * Won {item} at ${bid} over ${item.price}, with a true value of ${item.true_value}.\n"
841
+ return msg.strip()
842
+
843
+ def to_monitors(self, as_json=False):
844
+ # budget, profit, items_won, tokens
845
+ if len(self.items_won) == 0 and not as_json:
846
+ items_won = [['', 0, 0]]
847
+ else:
848
+ items_won = []
849
+ for item, bid in self.items_won:
850
+ items_won.append([str(item), bid, item.true_value])
851
+
852
+ profit_error_history = self.profit_error_history if self.profit_error_history != [] or as_json else [['', '', '']]
853
+ win_bid_error_history = self.win_bid_error_history if self.win_bid_error_history != [] or as_json else [['', '', '']]
854
+ budget_error_history = self.budget_error_history if self.budget_error_history != [] or as_json else [['', '']]
855
+ changes_of_plan = self.changes_of_plan if self.changes_of_plan != [] or as_json else [['', '', '']]
856
+
857
+ if as_json:
858
+ return {
859
+ 'auction_hash': self.auction_hash,
860
+ 'bidder_name': self.name,
861
+ 'model_name': self.model_name,
862
+ 'desire': self.desire,
863
+ 'plan_strategy': self.plan_strategy,
864
+ 'overestimate_percent': self.overestimate_percent,
865
+ 'temperature': self.temperature,
866
+ 'correct_belief': self.correct_belief,
867
+ 'enable_learning': self.enable_learning,
868
+ 'budget': self.original_budget,
869
+ 'money_left': self.budget,
870
+ 'profit': self.profit,
871
+ 'items_won': items_won,
872
+ 'tokens_used': self.llm_token_count,
873
+ 'openai_cost': round(self.openai_cost, 2),
874
+ 'failed_bid_cnt': self.failed_bid_cnt,
875
+ 'self_belief_error_cnt': self.self_belief_error_cnt,
876
+ 'other_belief_error_cnt': self.other_belief_error_cnt,
877
+ 'failed_bid_rate': round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2),
878
+ 'self_error_rate': round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2),
879
+ 'other_error_rate': round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2),
880
+ 'engagement_count': self.engagement_count,
881
+ 'engagement_history': self.engagement_history,
882
+ 'changes_of_plan': changes_of_plan,
883
+ 'budget_error_history': budget_error_history,
884
+ 'profit_error_history': profit_error_history,
885
+ 'win_bid_error_history': win_bid_error_history,
886
+ 'history': self.llm_prompt_history
887
+ }
888
+ else:
889
+ return [
890
+ self.budget,
891
+ self.profit,
892
+ items_won,
893
+ self.llm_token_count,
894
+ round(self.openai_cost, 2),
895
+ round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2),
896
+ round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2),
897
+ round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2),
898
+ self.engagement_count,
899
+ draw_plot(f"{self.name} ({self.model_name})", self.budget_history, self.profit_history),
900
+ changes_of_plan,
901
+ budget_error_history,
902
+ profit_error_history,
903
+ win_bid_error_history
904
+ ]
905
+
906
+ def dialogue_to_chatbot(self):
907
+ # chatbot: [[Human, AI], [], ...]
908
+ # only dialogue will be sent to LLMs. chatbot is just for display.
909
+ assert len(self.dialogue_history) % 2 == 0
910
+ chatbot = []
911
+ for i in range(0, len(self.dialogue_history), 2):
912
+ # if exceeds the length of dialogue, append the last message
913
+ human_msg = self.dialogue_history[i].content
914
+ ai_msg = self.dialogue_history[i+1].content
915
+ if ai_msg == '': ai_msg = None
916
+ if human_msg == '': human_msg = None
917
+ chatbot.append([human_msg, ai_msg])
918
+ return chatbot
919
+
920
+
921
+ def draw_plot(title, hedge_list, profit_list):
922
+ x1 = [str(i) for i in range(len(hedge_list))]
923
+ x2 = [str(i) for i in range(len(profit_list))]
924
+ y1 = hedge_list
925
+ y2 = profit_list
926
+
927
+ fig, ax1 = plt.subplots()
928
+
929
+ color = 'tab:red'
930
+ ax1.set_xlabel('Bidding Round')
931
+ ax1.set_ylabel('Budget Left ($)', color=color)
932
+ ax1.plot(x1, y1, color=color, marker='o')
933
+ ax1.tick_params(axis='y', labelcolor=color)
934
+
935
+ for i, j in zip(x1, y1):
936
+ ax1.text(i, j, str(j), color=color)
937
+
938
+ ax2 = ax1.twinx()
939
+ color = 'tab:blue'
940
+ ax2.set_ylabel('Total Profit ($)', color=color)
941
+ ax2.plot(x2, y2, color=color, marker='^')
942
+ ax2.tick_params(axis='y', labelcolor=color)
943
+
944
+ for i, j in zip(x2, y2):
945
+ ax2.text(i, j, str(j), color=color)
946
+
947
+ lines1, labels1 = ax1.get_legend_handles_labels()
948
+ lines2, labels2 = ax2.get_legend_handles_labels()
949
+ ax2.legend(lines1 + lines2, labels1 + labels2, loc=0)
950
+
951
+ # fig.tight_layout()
952
+ plt.title(title)
953
+
954
+ return fig
955
+
956
+
957
+ def bidding_multithread(bidder_list: List[Bidder],
958
+ instruction_list,
959
+ func_type,
960
+ thread_num=5,
961
+ retry=1):
962
+ '''
963
+ auctioneer_msg: either a uniform message (str) or customed (list)
964
+ '''
965
+ assert func_type in ['plan', 'bid', 'summarize', 'replan']
966
+
967
+ result_queue = queue.Queue()
968
+ threads = []
969
+ semaphore = threading.Semaphore(thread_num)
970
+
971
+ def run_once(i: int, bidder: Bidder, auctioneer_msg: str):
972
+ try:
973
+ semaphore.acquire()
974
+ if func_type == 'bid':
975
+
976
+ result = bidder.bid(auctioneer_msg)
977
+ elif func_type == 'summarize':
978
+ result = bidder.summarize(auctioneer_msg)
979
+ elif func_type == 'plan':
980
+ result = bidder.init_plan(auctioneer_msg)
981
+ elif func_type == 'replan':
982
+ result = bidder.replan(auctioneer_msg)
983
+ else:
984
+ raise NotImplementedError(f'func_type {func_type} not implemented')
985
+ result_queue.put((True, i, result))
986
+ # except Exception as e:
987
+ # result_queue.put((False, i, str(trace_back(e))))
988
+ finally:
989
+ semaphore.release()
990
+
991
+ if isinstance(instruction_list, str):
992
+ instruction_list = [instruction_list] * len(bidder_list)
993
+
994
+ for i, (bidder, msg) in enumerate(zip(bidder_list, instruction_list)):
995
+ thread = threading.Thread(target=run_once, args=(i, bidder, msg))
996
+ thread.start()
997
+ threads.append(thread)
998
+
999
+ for thread in threads:
1000
+ thread.join(timeout=600)
1001
+
1002
+ results = [result_queue.get() for _ in range(len(bidder_list))]
1003
+
1004
+ errors = []
1005
+ for success, id, result in results:
1006
+ if not success:
1007
+ errors.append((id, result))
1008
+
1009
+ if errors:
1010
+ raise Exception(f"Error(s) in {func_type}:\n" + '\n'.join([f'{i}: {e}' for i, e in errors]))
1011
+
1012
+ valid_results = [x[1:] for x in results if x[0]]
1013
+ valid_results.sort()
1014
+
1015
+ return [x for _, x in valid_results]
1016
+
1017
+
1018
+ def bidders_to_chatbots(bidder_list: List[Bidder], profit_report=False):
1019
+ if profit_report: # usually at the end of an auction
1020
+ return [x.dialogue_to_chatbot() + [[x.profit_report(), None]] for x in bidder_list]
1021
+ else:
1022
+ return [x.dialogue_to_chatbot() for x in bidder_list]
1023
+
1024
+
1025
+ def create_bidders(bidder_info_jsl, auction_hash):
1026
+ bidder_info_jsl = LoadJsonL(bidder_info_jsl)
1027
+ bidder_list = []
1028
+ for info in bidder_info_jsl:
1029
+ info['auction_hash'] = auction_hash
1030
+ bidder_list.append(Bidder.create(**info))
1031
+ return bidder_list
src/human_bidder.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from langchain.schema import (
3
+ AIMessage,
4
+ HumanMessage,
5
+ SystemMessage
6
+ )
7
+ from .bidder_base import Bidder, draw_plot
8
+ from .item_base import Item
9
+ from langchain.input import get_colored_text
10
+ import time
11
+
12
+
13
+ class HumanBidder(Bidder):
14
+ name: str
15
+ human_name: str = "Adam"
16
+ budget: int
17
+ auction_hash: str
18
+
19
+ cur_item_id = 0
20
+ items: list = []
21
+ withdraw: bool = False
22
+
23
+ engagement_count: int = 0
24
+ original_budget: int = 0
25
+ profit: int = 0
26
+ items_won = []
27
+
28
+ all_bidders_status = {} # track others' profit
29
+
30
+ # essential for demo
31
+ need_input: bool = False
32
+ semaphore: int = 0 # if needs input, then semaphore is set as 1, else waits.
33
+ input_box: str = None # global variable for accepting user input
34
+
35
+ # not used
36
+ model_name: str = 'human'
37
+ openai_cost = 0
38
+ desire = ''
39
+ plan_strategy = ''
40
+ correct_belief = True
41
+
42
+ class Config:
43
+ arbitrary_types_allowed = True
44
+
45
+ def get_plan_instruct(self, items: List[Item]):
46
+ self.items = items
47
+ plan_instruct = "As {bidder_name}, you have a total budget of ${budget}. This auction has a total of {item_num} items to be sequentially presented, they are:\n{items_info}".format(
48
+ bidder_name=self.name,
49
+ budget=self.budget,
50
+ item_num=len(items),
51
+ items_info=self._get_items_value_str(items)
52
+ )
53
+ return plan_instruct
54
+
55
+ def init_plan(self, plan_instruct: str):
56
+ # Human = auctioneer, AI = bidder
57
+ self.dialogue_history += [
58
+ HumanMessage(content=plan_instruct),
59
+ AIMessage(content='Got it!')
60
+ ]
61
+ return ''
62
+
63
+ def get_bid_instruct(self, auctioneer_msg, bid_round):
64
+ self.dialogue_history += [
65
+ HumanMessage(content=auctioneer_msg),
66
+ AIMessage(content='')
67
+ ]
68
+ return auctioneer_msg
69
+
70
+ def bid(self, bid_instruct):
71
+ # wait for the cue to handle user input
72
+ while self.semaphore <= 0:
73
+ time.sleep(1)
74
+
75
+ self.dialogue_history += [
76
+ HumanMessage(content=''),
77
+ AIMessage(content=self.input_box)
78
+ ]
79
+ self.semaphore -= 1
80
+ self.need_input = False
81
+ return self.input_box
82
+
83
+ def get_summarize_instruct(self, bidding_history: str, hammer_msg: str, win_lose_msg: str):
84
+ instruct_summarize = f"{bidding_history}\n\n{hammer_msg}\n{win_lose_msg}"
85
+ return instruct_summarize
86
+
87
+ def summarize(self, instruct_summarize: str):
88
+ self.dialogue_history += [
89
+ HumanMessage(content=instruct_summarize),
90
+ AIMessage(content='Noted.')
91
+ ]
92
+ self.budget_history.append(self.budget)
93
+ self.profit_history.append(self.profit)
94
+ return ''
95
+
96
+ def get_replan_instruct(self):
97
+ return ''
98
+
99
+ def replan(self, instruct_replan):
100
+ self.withdraw = False
101
+ self.cur_item_id += 1
102
+ return ''
103
+
104
+ def to_monitors(self, as_json=False):
105
+ items_won = []
106
+ for item, bid in self.items_won:
107
+ items_won.append([str(item), bid, item.true_value])
108
+ if as_json:
109
+ return {
110
+ 'auction_hash': self.auction_hash,
111
+ 'bidder_name': self.name,
112
+ 'human_name': self.human_name,
113
+ 'model_name': self.model_name,
114
+ 'budget': self.original_budget,
115
+ 'money_left': self.budget,
116
+ 'profit': self.profit,
117
+ 'items_won': items_won,
118
+ 'engagement_count': self.engagement_count,
119
+ }
120
+ else:
121
+ return [
122
+ self.budget,
123
+ self.profit,
124
+ items_won,
125
+ 0,
126
+ 0,
127
+ round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2),
128
+ 0,
129
+ 0,
130
+ self.engagement_count,
131
+ draw_plot(f"{self.name} ({self.model_name})", self.budget_history, self.profit_history),
132
+ [],
133
+ [],
134
+ [],
135
+ []
136
+ ]
137
+
src/item_base.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.append('..')
3
+ from utils import LoadJsonL
4
+
5
+
6
+ class Item():
7
+ def __init__(self, id: int, name: str, price: int, desc: str, true_value: int):
8
+ self.id = id
9
+ self.name = name
10
+ self.price = price
11
+ self.desc = desc
12
+ self.true_value = true_value
13
+ self._original_price = price
14
+
15
+ def get_desc(self):
16
+ return f"{self.name}, starting at ${int(self.price)}."
17
+
18
+ def __repr__(self):
19
+ return f"{self.name}"
20
+
21
+ def __str__(self):
22
+ return f"{self.name}"
23
+
24
+ def info(self):
25
+ return f"{self.name}: ${int(self.price)} to ${self.true_value}."
26
+
27
+ def lower_price(self, percentage: float = 0.2):
28
+ # lower starting price by 20%
29
+ self.price = int(self.price * (1 - percentage))
30
+
31
+ def reset_price(self):
32
+ self.price = self._original_price
33
+
34
+
35
+ def create_items(item_info_jsl):
36
+ '''
37
+ item_info: a list of dict (name, price, desc, id)
38
+ '''
39
+ item_info_jsl = LoadJsonL(item_info_jsl)
40
+ item_list = []
41
+ for info in item_info_jsl:
42
+ item_list.append(Item(**info))
43
+ return item_list
44
+
45
+
46
+ def item_list_equal(items_1: list, items_2: list):
47
+ # could be a list of strings (names) or a list of Items
48
+ item_1_names = [item.name if isinstance(item, Item) else item for item in items_1]
49
+ item_2_names = [item.name if isinstance(item, Item) else item for item in items_2]
50
+ return set(item_1_names) == set(item_2_names)
src/prompt_base.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # for bidder
2
+ SYSTEM_MESSAGE = """
3
+ You are {name}, who is attending an ascending-bid auction as a bidder. This auction will have some other bidders to compete with you in bidding wars. The price is gradually raised, bidders drop out until finally only one bidder remains, and that bidder wins the item at this final price. Remember: {desire_desc}.
4
+
5
+ Here are some must-know rules for this auction:
6
+
7
+ 1. Item Values: The true value of an item means its resale value in the broader market, which you don't know. You will have a personal estimation of the item value. However, note that your estimated value could deviate from the true value, due to your potential overestimation or underestimation of this item.
8
+ 2. Winning Bid: The highest bid wins the item. Your profit from winning an item is determined by the difference between the item's true value and your winning bid. You should try to win an item at a bid as minimal as possible to save your budget.
9
+ """.strip()
10
+
11
+
12
+ _LEARNING_STATEMENT = " and your learnings from previous auctions"
13
+
14
+
15
+ INSTRUCT_PLAN_TEMPLATE = """
16
+ As {bidder_name}, you have a total budget of ${budget}. This auction has a total of {item_num} items to be sequentially presented, they are:
17
+ {items_info}
18
+
19
+ ---
20
+
21
+ Please plan for your bidding strategy for the auction based on the information{learning_statement}. A well-thought-out plan positions you advantageously against competitors, allowing you to allocate resources effectively. With a clear strategy, you can make decisions rapidly and confidently, especially under the pressure of the auction environment. Remember: {desire_desc}.
22
+
23
+ After articulate your thinking, in you plan, assign a priority level to each item. Present the priorities for all items in a JSON format, each item should be represented as a key-value pair, where the key is the item name and the value is its priority on the scale from 1-3. An example output is: {{"Fixture Y": 3, "Module B": 2, "Product G": 2}}. The descriptions of the priority scale of items are as follows.
24
+ * 1 - This item is the least important. Consider giving it up if necessary to save money for the rest of the auction.
25
+ * 2 - This item holds value but isn't a top priority for the bidder. Could bid on it if you have enough budget.
26
+ * 3 - This item is of utmost importance and is a top priority for the bidder in the rest of the auction.
27
+ """.strip()
28
+
29
+
30
+ INSTRUCT_BID_TEMPLATE = """
31
+ Now, the auctioneer says: "{auctioneer_msg}"
32
+
33
+ ---
34
+
35
+ As {bidder_name}, you have to decide whether to bid on this item or withdraw and explain why, according to your plan{learning_statement}. Remember, {desire_desc}.
36
+
37
+ Here are some common practices of bidding:
38
+ 1. Showing your interest by bidding with or slightly above the starting price of this item, then gradually increase your bid.
39
+ 2. Think step by step of the pros and cons and the consequences of your action (e.g., remaining budget in future bidding) in order to achieve your primary objective.
40
+
41
+ Give your reasons first, then make your final decision clearly. You should either withdraw (saying "I'm out!") or make a higher bid for this item (saying "I bid $xxx!").
42
+ """.strip()
43
+
44
+
45
+ INSTRUCT_SUMMARIZE_TEMPLATE = """
46
+ Here is the history of the bidding war of {cur_item}:
47
+ "{bidding_history}"
48
+
49
+ The auctioneer concludes: "{hammer_msg}"
50
+
51
+ ---
52
+
53
+ {win_lose_msg}
54
+ As {bidder_name}, you have to update the status of the auction based on this round of bidding. Here's your previous status:
55
+ ```
56
+ {prev_status}
57
+ ```
58
+
59
+ Summarize the notable behaviors of all bidders in this round of bidding for future reference. Then, update the status JSON regarding the following information:
60
+ - 'remaining_budget': The remaining budget of you, expressed as a numerical value.
61
+ - 'total_profits': The total profits achieved so far for each bidder, where a numerical value following a bidder's name. No equation is needed, just the numerical value.
62
+ - 'winning_bids': The winning bids for every item won by each bidder, listed as key-value pairs, for example, {{"bidder_name": {{"item_name_1": winning_bid}}, {{"item_name_2": winning_bid}}, ...}}. If a bidder hasn't won any item, then the value for this bidder should be an empty dictionary {{}}.
63
+ - Only include the bidders mentioned in the given text. If a bidder is not mentioned (e.g. Bidder 4 in the following example), then do not include it in the JSON object.
64
+
65
+ After summarizing the bidding history, you must output the current status in a parsible JSON format. An example output looks like:
66
+ ```
67
+ {{"remaining_budget": 8000, "total_profits": {{"Bidder 1": 1300, "Bidder 2": 1800, "Bidder 3": 0}}, "winning_bids": {{"Bidder 1": {{"Item 2": 1200, "Item 3": 1000}}, "Bidder 2": {{"Item 1": 2000}}, "Bidder 3": {{}}}}}}
68
+ ```
69
+ """.strip()
70
+
71
+
72
+ INSTRUCT_LEARNING_TEMPLATE = """
73
+ Review and reflect on the historical data provided from a past auction.
74
+
75
+ {past_auction_log}
76
+
77
+ Here are your past learnings:
78
+
79
+ {past_learnings}
80
+
81
+ Based on the auction log, formulate or update your learning points that could be advantageous to your strategies in the future. Your learnings should be strategic, and of universal relevance and practical use for future auctions. Consolidate your learnings into a concise numbered list of sentences.
82
+ """.strip()
83
+
84
+
85
+ INSTRUCT_REPLAN_TEMPLATE = """
86
+ The current status of you and other bidders is as follows:
87
+ ```
88
+ {status_quo}
89
+ ```
90
+
91
+ Here are the remaining items in the rest of the auction:
92
+ "{remaining_items_info}"
93
+
94
+ As {bidder_name}, considering the current status{learning_statement}, review your strategies. Adjust your plans based on the outcomes and new information to achieve your primary objective. This iterative process ensures that your approach remains relevant and effective. Please do the following:
95
+ 1. Always remember: {desire_desc}.
96
+ 2. Determine and explain if there's a need to update the priority list of remaining items based on the current status.
97
+ 3. Present the updated priorities in a JSON format, each item should be represented as a key-value pair, where the key is the item name and the value is its priority on the scale from 1-3. An example output is: {{"Fixture Y": 3, "Module B": 2, "Product G": 2}}. The descriptions of the priority scale of items are as follows.
98
+ * 1 - This item is the least important. Consider giving it up if necessary to save money for the rest of the auction.
99
+ * 2 - This item holds value but isn't a top priority for the bidder. Could bid on it if you have enough budget.
100
+ * 3 - This item is of utmost importance and is a top priority for the bidder in the rest of the auction.
101
+ """.strip()
102
+
103
+
104
+ # for auctioneer
105
+ PARSE_BID_INSTRUCTION = """
106
+ Your task is to parse a response from a bidder in an auction, and extract the bidding price from the response. Here are the rules:
107
+ - If the language model decides to withdraw from the bidding (e.g., saying "I'm out!"), output -1.
108
+ - If a bidding price is mentioned (e.g., saying "I bid $xxx!"), output that price number (e.g., $xxx).
109
+ Here is the response:
110
+
111
+ {response}
112
+
113
+ Don't say anything else other than just a number: either the bidding price (e.g., $xxx, with $) or -1.
114
+ """.strip()
115
+
116
+
117
+ AUCTION_HISTORY = """
118
+ ## Auction Log
119
+
120
+ ### 1. Equipment E, starting at $5000.
121
+
122
+ #### 1st bid:
123
+ * Bidder 1: $5500
124
+ * Bidder 2: $5100
125
+ * Bidder 3: $5100
126
+ * Bidder 4: $5500
127
+ * Bidder 5: $6000
128
+
129
+ #### 2nd bid:
130
+ * Bidder 1: Withdrew
131
+ * Bidder 2: Withdrew
132
+ * Bidder 3: Withdrew
133
+ * Bidder 4: $6500
134
+
135
+ #### 3rd bid:
136
+ * Bidder 5: $7000
137
+
138
+ #### 4th bid:
139
+ * Bidder 4: Withdrew
140
+
141
+ #### Hammer price (true value):
142
+ * Bidder 5: $7000 ($10000)
143
+
144
+ ### 2. Thingamajig C, starting at $1000.
145
+
146
+ #### 1st bid:
147
+ * Bidder 1: $1500
148
+ * Bidder 2: Withdrew
149
+ * Bidder 3: Withdrew
150
+ * Bidder 4: Withdrew
151
+ * Bidder 5: Withdrew
152
+
153
+ #### Hammer price (true value):
154
+ * Bidder 1: $1500 ($2000)
155
+
156
+ ### 3. Component S, starting at $1000.
157
+
158
+ #### 1st bid:
159
+ * Bidder 1: $1200
160
+ * Bidder 2: $1050
161
+ * Bidder 3: $1000
162
+ * Bidder 4: Withdrew
163
+ * Bidder 5: $1200
164
+
165
+ #### 2nd bid:
166
+ * Bidder 2: Withdrew
167
+ * Bidder 3: $1300
168
+ * Bidder 5: $1300
169
+
170
+ #### 3rd bid:
171
+ * Bidder 1: Withdrew
172
+ * Bidder 3: $1400
173
+
174
+ #### 4th bid:
175
+ * Bidder 5: Withdrew
176
+
177
+ #### Hammer price (true value):
178
+ * Bidder 3: $1400 ($2000)
179
+
180
+ ### 4. Implement G, starting at $1000.
181
+
182
+ #### 1st bid:
183
+ * Bidder 1: $1100
184
+ * Bidder 2: $1000
185
+ * Bidder 3: $1100
186
+ * Bidder 4: Withdrew
187
+ * Bidder 5: $1500
188
+
189
+ #### 2nd bid:
190
+ * Bidder 1: Withdrew
191
+ * Bidder 2: Withdrew
192
+ * Bidder 3: $1600
193
+
194
+ #### 3rd bid:
195
+ * Bidder 5: $1700
196
+
197
+ #### 4th bid:
198
+ * Bidder 3: Withdrew
199
+
200
+ #### Hammer price (true value):
201
+ * Bidder 5: $1700 ($2000)
202
+
203
+ ### 5. Piece T, starting at $1000.
204
+
205
+ #### 1st bid:
206
+ * Bidder 1: $1100
207
+ * Bidder 2: $1000
208
+ * Bidder 3: $1100
209
+ * Bidder 4: Withdrew
210
+ * Bidder 5: $1200
211
+
212
+ #### 2nd bid:
213
+ * Bidder 1: Withdrew
214
+ * Bidder 2: $1300
215
+ * Bidder 3: $1300
216
+
217
+ #### 3rd bid:
218
+ * Bidder 2: $1400
219
+ * Bidder 5: Withdrew
220
+
221
+ #### 4th bid:
222
+ * Bidder 3: $1500
223
+
224
+ #### 5th bid:
225
+ * Bidder 2: Withdrew
226
+
227
+ #### Hammer price (true value):
228
+ * Bidder 3: $1500 ($2000)
229
+
230
+ ### 6. Doodad D, starting at $1000.
231
+
232
+ #### 1st bid:
233
+ * Bidder 1: Withdrew
234
+ * Bidder 2: $1000
235
+ * Bidder 3: Withdrew
236
+ * Bidder 4: $1010
237
+ * Bidder 5: $1300
238
+
239
+ #### 2nd bid:
240
+ * Bidder 2: Withdrew
241
+ * Bidder 4: Withdrew
242
+
243
+ #### Hammer price (true value):
244
+ * Bidder 5: $1300 ($2000)
245
+
246
+ ### 7. Gizmo F, starting at $1000.
247
+
248
+ #### 1st bid:
249
+ * Bidder 1: $1100
250
+ * Bidder 2: $1000
251
+ * Bidder 3: Withdrew
252
+ * Bidder 4: Withdrew
253
+ * Bidder 5: Withdrew
254
+
255
+ #### 2nd bid:
256
+ * Bidder 2: $1200
257
+
258
+ #### 3rd bid:
259
+ * Bidder 1: Withdrew
260
+
261
+ #### Hammer price (true value):
262
+ * Bidder 2: $1200 ($2000)
263
+
264
+ ### 8. Widget A, starting at $1000.
265
+
266
+ #### 1st bid:
267
+ * Bidder 1: $2200
268
+ * Bidder 2: $1000
269
+ * Bidder 3: $1100
270
+ * Bidder 4: Withdrew
271
+ * Bidder 5: Withdrew
272
+
273
+ #### 2nd bid:
274
+ * Bidder 2: Withdrew
275
+ * Bidder 3: Withdrew
276
+
277
+ #### Hammer price (true value):
278
+ * Bidder 1: $2200 ($2000)
279
+
280
+ ### 9. Gadget B, starting at $1000.
281
+
282
+ #### 1st bid:
283
+ * Bidder 1: $1200
284
+ * Bidder 2: Withdrew
285
+ * Bidder 3: Withdrew
286
+ * Bidder 4: $1000
287
+ * Bidder 5: Withdrew
288
+
289
+ #### 2nd bid:
290
+ * Bidder 4: Withdrew
291
+
292
+ #### Hammer price (true value):
293
+ * Bidder 1: $1200 ($2000)
294
+
295
+ ### 10. Mechanism J, starting at $5000.
296
+
297
+ #### 1st bid:
298
+ * Bidder 1: Withdrew
299
+ * Bidder 2: $5000
300
+ * Bidder 3: $5100
301
+ * Bidder 4: $6000
302
+ * Bidder 5: Withdrew
303
+
304
+ #### 2nd bid:
305
+ * Bidder 2: $6500
306
+ * Bidder 3: $6500
307
+
308
+ #### 3rd bid:
309
+ * Bidder 3: $7000
310
+ * Bidder 4: $7000
311
+
312
+ #### 4th bid:
313
+ * Bidder 2: $7500
314
+ * Bidder 3: Withdrew
315
+
316
+ #### 5th bid:
317
+ * Bidder 4: $8000
318
+
319
+ #### 6th bid:
320
+ * Bidder 2: $8500
321
+
322
+ #### 7th bid:
323
+ * Bidder 4: Withdrew
324
+
325
+ #### Hammer price (true value):
326
+ * Bidder 2: $8500 ($10000)
327
+
328
+ ## Personal Report
329
+
330
+ * Bidder 1, starting with $10000, has won 3 items in this auction, with a total profit of $1100.:
331
+ * Won Thingamajig C at $1500 over $1000, with a true value of $2000.
332
+ * Won Widget A at $2200 over $1000, with a true value of $2000.
333
+ * Won Gadget B at $1200 over $1000, with a true value of $2000.
334
+
335
+ * Bidder 2, starting with $10000, has won 2 items in this auction, with a total profit of $2300.:
336
+ * Won Gizmo F at $1200 over $1000, with a true value of $2000.
337
+ * Won Mechanism J at $8500 over $5000, with a true value of $10000.
338
+
339
+ * Bidder 3, starting with $10000, has won 2 items in this auction, with a total profit of $1100.:
340
+ * Won Component S at $1400 over $1000, with a true value of $2000.
341
+ * Won Piece T at $1500 over $1000, with a true value of $2000.
342
+
343
+ * Bidder 4, starting with $10000, has won 0 items in this auction, with a total profit of $0.:
344
+
345
+ * Bidder 5, starting with $10000, has won 3 items in this auction, with a total profit of $4000.:
346
+ * Won Equipment E at $7000 over $5000, with a true value of $10000.
347
+ * Won Implement G at $1700 over $1000, with a true value of $2000.
348
+ * Won Doodad D at $1300 over $1000, with a true value of $2000.
349
+ """.strip()
utils.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ujson as json
2
+ import re
3
+ import traceback
4
+
5
+
6
+ def trace_back(error_msg):
7
+ exc = traceback.format_exc()
8
+ msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
9
+ return msg
10
+
11
+
12
+ def extract_numbered_list(paragraph):
13
+ # Updated regular expression to match numbered list
14
+ # It looks for:
15
+ # - start of line
16
+ # - one or more digits
17
+ # - a period or parenthesis
18
+ # - optional whitespace
19
+ # - any character (captured in a group) until the end of line or a new number
20
+ pattern = r"^\s*(\d+[.)]\s?.*?)(?=\s*\d+[.)]|$)"
21
+
22
+ matches = re.findall(pattern, paragraph, re.DOTALL | re.MULTILINE)
23
+ return [match.strip() for match in matches]
24
+
25
+
26
+ def chunks(lst, n):
27
+ """Yield successive n-sized chunks from lst."""
28
+ for i in range(0, len(lst), n):
29
+ yield lst[i : i + n]
30
+
31
+
32
+ def reset_state_list(*states):
33
+ empty = [None for _ in states[1:]]
34
+ return [[]] + empty
35
+
36
+
37
+ def LoadJsonL(filename):
38
+ if isinstance(filename, str):
39
+ jsl = []
40
+ with open(filename) as f:
41
+ for line in f:
42
+ jsl.append(json.loads(line))
43
+ return jsl
44
+ else:
45
+ return filename
46
+
47
+
48
+ def extract_jsons_from_text(text):
49
+ json_dicts = []
50
+ stack = []
51
+ start_index = None
52
+
53
+ for i, char in enumerate(text):
54
+ if char == '{':
55
+ stack.append(char)
56
+ if start_index is None:
57
+ start_index = i
58
+ elif char == '}':
59
+ if stack:
60
+ stack.pop()
61
+ if not stack and start_index is not None:
62
+ json_candidate = text[start_index:i+1]
63
+ try:
64
+ parsed_json = json.loads(json_candidate)
65
+ json_dicts.append(parsed_json)
66
+ start_index = None
67
+ except json.JSONDecodeError:
68
+ pass
69
+ finally:
70
+ start_index = None
71
+
72
+ if len(json_dicts) == 0: json_dicts = [{}]
73
+ return json_dicts