Spaces:
Runtime error
Runtime error
File size: 12,416 Bytes
85a5010 d241223 85a5010 151b464 85a5010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from utils import create_logger, set_seed, format_output
import os
import time
import argparse
import json
from PIL import Image
import torch
import gradio as gr
import nltk
from clip import CLIP
from gen_utils import generate_caption
from control_gen_utils import control_generate_caption
from transformers import AutoModelForMaskedLM, AutoTokenizer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=1, help = "Only supports batch_size=1 currently.")
parser.add_argument("--device", type=str,
default='cpu',choices=['cuda','cpu'])
## Generation and Controllable Type
parser.add_argument('--run_type',
default='caption',
nargs='?',
choices=['caption', 'controllable'])
parser.add_argument('--prompt',
default='Image of a',type=str)
parser.add_argument('--order',
default='shuffle',
nargs='?',
choices=['sequential', 'shuffle', 'span', 'random','parallel'],
help="Generation order of text")
parser.add_argument('--control_type',
default='sentiment',
nargs='?',
choices=["sentiment","pos"],
help="which controllable task to conduct")
parser.add_argument('--pos_type', type=list,
default=[['DET'], ['ADJ','NOUN'], ['NOUN'],
['VERB'], ['VERB'],['ADV'], ['ADP'],
['DET','NOUN'], ['NOUN'], ['NOUN','.'],
['.','NOUN'],['.','NOUN']],
help="predefined part-of-speech templete")
parser.add_argument('--sentiment_type',
default="positive",
nargs='?',
choices=["positive", "negative"])
parser.add_argument('--samples_num',
default=2,type=int)
## Hyperparameters
parser.add_argument("--sentence_len", type=int, default=10)
parser.add_argument("--candidate_k", type=int, default=200)
parser.add_argument("--alpha", type=float, default=0.02, help="weight for fluency")
parser.add_argument("--beta", type=float, default=2.0, help="weight for image-matching degree")
parser.add_argument("--gamma", type=float, default=5.0, help="weight for controllable degree")
parser.add_argument("--lm_temperature", type=float, default=0.1)
parser.add_argument("--num_iterations", type=int, default=1, help="predefined iterations for Gibbs Sampling")
## Models and Paths
parser.add_argument("--lm_model", type=str, default='bert-base-uncased',
help="Path to language model") # bert,roberta
parser.add_argument("--match_model", type=str, default='openai/clip-vit-base-patch32',
help="Path to Image-Text model") # clip,align
parser.add_argument("--caption_img_path", type=str, default='./examples/girl.jpg',
help="file path of the image for captioning")
parser.add_argument("--stop_words_path", type=str, default='stop_words.txt',
help="Path to stop_words.txt")
parser.add_argument("--add_extra_stopwords", type=list, default=[],
help="you can add some extra stop words")
args = parser.parse_args()
return args
def run_caption(args, image, lm_model, lm_tokenizer, clip, token_mask, logger):
FinalCaptionList = []
BestCaptionList = []
# logger.info(f"Processing: {image_path}")
image_instance = image.convert("RGB")
for sample_id in range(args.samples_num):
logger.info(f"Sample {sample_id}: ")
gen_texts, clip_scores = generate_caption(lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
top_k=args.candidate_k, temperature=args.lm_temperature,
max_iter=args.num_iterations,alpha=args.alpha,beta=args.beta,
generate_order = args.order)
FinalCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-2]
BestCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-1]
FinalCaptionList.append(FinalCaptionStr)
BestCaptionList.append(BestCaptionStr)
return FinalCaptionList, BestCaptionList
def run_control(run_type, args, image, lm_model, lm_tokenizer, clip, token_mask, logger):
FinalCaptionList = []
BestCaptionList = []
# logger.info(f"Processing: {image_path}")
image_instance = image.convert("RGB")
for sample_id in range(args.samples_num):
logger.info(f"Sample {sample_id}: ")
gen_texts, clip_scores = control_generate_caption(lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
top_k=args.candidate_k, temperature=args.lm_temperature,
max_iter=args.num_iterations, alpha=args.alpha,
beta=args.beta, gamma=args.gamma,
ctl_type = args.control_type, style_type=args.sentiment_type,pos_type=args.pos_type, generate_order=args.order)
FinalCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-2]
BestCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-1]
FinalCaptionList.append(FinalCaptionStr)
BestCaptionList.append(BestCaptionStr)
return FinalCaptionList, BestCaptionList
def Demo(RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma, Img):
args = get_args()
set_seed(args.seed)
args.num_iterations = NumIterations
args.sentence_len = Length
args.run_type = RunType
args.control_type = ControlType
args.sentiment_type = SentimentType
args.alpha = Alpha
args.beta = Beta
args.gamma = Gamma
args.samples_num = SamplesNum
args.order = Order
img = Img
run_type = "caption" if args.run_type=="caption" else args.control_type
if run_type=="sentiment":
run_type = args.sentiment_type
if os.path.exists("logger")== False:
os.mkdir("logger")
logger = create_logger(
"logger",'demo_{}_{}_len{}_topk{}_alpha{}_beta{}_gamma{}_lmtemp{}_{}.log'.format(
run_type, args.order,args.sentence_len,
args.candidate_k, args.alpha,args.beta,args.gamma,args.lm_temperature,
time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())))
logger.info(f"Generating order:{args.order}")
logger.info(f"Run type:{run_type}")
logger.info(args)
# Load pre-trained model (weights)
lm_model = AutoModelForMaskedLM.from_pretrained(args.lm_model)
lm_tokenizer = AutoTokenizer.from_pretrained(args.lm_model)
lm_model.eval()
clip = CLIP(args.match_model)
clip.eval()
lm_model = lm_model.to(args.device)
clip = clip.to(args.device)
## Remove stop words, token mask
with open(args.stop_words_path,'r',encoding='utf-8') as stop_words_file:
stop_words = stop_words_file.readlines()
stop_words_ = [stop_word.rstrip('\n') for stop_word in stop_words]
stop_words_ += args.add_extra_stopwords
stop_ids = lm_tokenizer.convert_tokens_to_ids(stop_words_)
token_mask = torch.ones((1,lm_tokenizer.vocab_size))
for stop_id in stop_ids:
token_mask[0,stop_id]=0
token_mask = token_mask.to(args.device)
if args.run_type == 'caption':
FinalCaption, BestCaption = run_caption(args, img, lm_model, lm_tokenizer, clip, token_mask, logger)
elif args.run_type == 'controllable':
FinalCaption, BestCaption = run_control(run_type, args, img, lm_model, lm_tokenizer, clip, token_mask, logger)
else:
raise Exception('run_type must be caption or controllable!')
logger.handlers = []
FinalCaptionFormat, BestCaptionFormat = format_output(SamplesNum, FinalCaption, BestCaption)
return FinalCaptionFormat, BestCaptionFormat
def RunTypeChange(choice):
if choice == "caption":
return gr.update(visible=False)
elif choice == "controllable":
return gr.update(visible=True)
def ControlTypeChange(choice):
if choice == "pos":
return gr.update(visible=False)
elif choice == "sentiment":
return gr.update(visible=True)
with gr.Blocks() as demo:
gr.Markdown("""
# ConZIC
### Controllable Zero-shot Image Captioning by Sampling-Based Polishing
""")
with gr.Row():
with gr.Column():
RunType = gr.Radio(
["caption", "controllable"], value="caption", label="Run Type", info="Select the Run Type"
)
ControlType = gr.Radio(
["sentiment", "pos"], value="sentiment", label="Control Type", info="Select the Control Type",
visible=False, interactive=True
)
SentimentType = gr.Radio(
["positive", "negative"], value="positive", label="Sentiment Type", info="Select the Sentiment Type",
visible=False, interactive=True
)
Order = gr.Radio(
["sequential", "shuffle", "random"], value="shuffle", label="Order", info="Generation order of text"
)
RunType.change(fn = RunTypeChange, inputs = RunType, outputs = SentimentType)
RunType.change(fn = RunTypeChange, inputs = RunType, outputs = ControlType)
ControlType.change(fn = ControlTypeChange, inputs = ControlType, outputs = SentimentType)
with gr.Row():
Length = gr.Slider(
5, 15, value=10, label="Sentence Length", info="Choose betwen 5 and 15", step=1
)
NumIterations = gr.Slider(
1, 15, value=10, label="Num Iterations", info="predefined iterations for Gibbs Sampling", step=1
)
with gr.Row():
SamplesNum = gr.Slider(
1, 5, value=2, label="Samples Num", step=1
)
Alpha = gr.Slider(
0, 1, value=0.02, label="Alpha", info="Weight for fluency", step=0.01
)
with gr.Row():
Beta = gr.Slider(
1, 5, value=2, label="Beta", info="Weight for image-matching degree", step=0.5
)
Gamma = gr.Slider(
1, 10, value=5, label="Gamma", info="weight for controllable degree", step=0.5
)
with gr.Column():
Img = gr.Image(label="Upload Picture", type = "pil")
FinalCaption = gr.Textbox(label="Final Caption", lines=5, placeholder="Final Caption")
BestCaption = gr.Textbox(label="Best Caption", lines=5, placeholder="Best Caption")
with gr.Row():
gen_button = gr.Button("Submit")
clear_button = gr.Button("Reset")
gen_button.click(
fn = Demo,
inputs = [
RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma, Img
],
outputs = [
FinalCaption, BestCaption
]
)
clear_button.click(
fn = lambda : [gr.Radio.update(value = 'caption'), gr.Radio.update(value = 'pos'), gr.Radio.update(value = 'positive'),
gr.Radio.update(value = 'shuffle'), gr.Slider.update(value = 10), gr.Slider.update(value = 10),
gr.Slider.update(value = 2), gr.Slider.update(value = 0.02), gr.Slider.update(value = 2),
gr.Slider.update(value = 5)
],
inputs = [
],
outputs = [
RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma
]
)
if __name__ == "__main__":
nltk.download('wordnet')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('sentiwordnet')
demo.launch()
|