File size: 12,416 Bytes
85a5010
 
 
 
 
 
 
 
 
 
d241223
85a5010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151b464
85a5010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from utils import create_logger, set_seed, format_output
import os
import time
import argparse
import json
from PIL import Image
import torch
import gradio as gr
import nltk

from clip import CLIP
from gen_utils import generate_caption
from control_gen_utils import control_generate_caption
from transformers import AutoModelForMaskedLM, AutoTokenizer


def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--batch_size", type=int, default=1, help = "Only supports batch_size=1 currently.")
    parser.add_argument("--device", type=str,
                        default='cpu',choices=['cuda','cpu'])

    ## Generation and Controllable Type
    parser.add_argument('--run_type',
                        default='caption',
                        nargs='?',
                        choices=['caption', 'controllable'])
    parser.add_argument('--prompt',
                        default='Image of a',type=str)
    parser.add_argument('--order',
                        default='shuffle',
                        nargs='?',
                        choices=['sequential', 'shuffle', 'span', 'random','parallel'],
                        help="Generation order of text")
    parser.add_argument('--control_type',
                        default='sentiment',
                        nargs='?',
                        choices=["sentiment","pos"],
                        help="which controllable task to conduct")
    parser.add_argument('--pos_type', type=list,
                        default=[['DET'], ['ADJ','NOUN'], ['NOUN'],
                                 ['VERB'], ['VERB'],['ADV'], ['ADP'],
                                 ['DET','NOUN'], ['NOUN'], ['NOUN','.'],
                                 ['.','NOUN'],['.','NOUN']],
                        help="predefined part-of-speech templete")
    parser.add_argument('--sentiment_type',
                        default="positive",
                        nargs='?',
                        choices=["positive", "negative"])
    parser.add_argument('--samples_num',
                        default=2,type=int)

    ## Hyperparameters
    parser.add_argument("--sentence_len", type=int, default=10)
    parser.add_argument("--candidate_k", type=int, default=200)
    parser.add_argument("--alpha", type=float, default=0.02, help="weight for fluency")
    parser.add_argument("--beta", type=float, default=2.0, help="weight for image-matching degree")
    parser.add_argument("--gamma", type=float, default=5.0, help="weight for controllable degree")
    parser.add_argument("--lm_temperature", type=float, default=0.1)
    parser.add_argument("--num_iterations", type=int, default=1, help="predefined iterations for Gibbs Sampling")

    ## Models and Paths
    parser.add_argument("--lm_model", type=str, default='bert-base-uncased',
                        help="Path to language model") # bert,roberta
    parser.add_argument("--match_model", type=str, default='openai/clip-vit-base-patch32',
                        help="Path to Image-Text model")  # clip,align
    parser.add_argument("--caption_img_path", type=str, default='./examples/girl.jpg',
                        help="file path of the image for captioning")
    parser.add_argument("--stop_words_path", type=str, default='stop_words.txt',
                        help="Path to stop_words.txt")
    parser.add_argument("--add_extra_stopwords", type=list, default=[],
                        help="you can add some extra stop words")

    args = parser.parse_args()

    return args

def run_caption(args, image, lm_model, lm_tokenizer, clip, token_mask, logger):
    FinalCaptionList = []
    BestCaptionList = []
    # logger.info(f"Processing: {image_path}")
    image_instance = image.convert("RGB")
    for sample_id in range(args.samples_num):
        logger.info(f"Sample {sample_id}: ")
        gen_texts, clip_scores = generate_caption(lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
                                  prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
                                  top_k=args.candidate_k, temperature=args.lm_temperature,
                                  max_iter=args.num_iterations,alpha=args.alpha,beta=args.beta,
                                  generate_order = args.order)
        FinalCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-2]
        BestCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-1]
        FinalCaptionList.append(FinalCaptionStr)
        BestCaptionList.append(BestCaptionStr)
    return FinalCaptionList, BestCaptionList


    
def run_control(run_type, args, image, lm_model, lm_tokenizer, clip, token_mask, logger):
    FinalCaptionList = []
    BestCaptionList = []
    # logger.info(f"Processing: {image_path}")
    image_instance = image.convert("RGB")
    for sample_id in range(args.samples_num):
        logger.info(f"Sample {sample_id}: ")
        gen_texts, clip_scores = control_generate_caption(lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
                                  prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
                                  top_k=args.candidate_k, temperature=args.lm_temperature,
                                  max_iter=args.num_iterations, alpha=args.alpha,
                                  beta=args.beta, gamma=args.gamma,
                                  ctl_type = args.control_type, style_type=args.sentiment_type,pos_type=args.pos_type, generate_order=args.order)
        FinalCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-2]
        BestCaptionStr = "Sample {}: ".format(sample_id + 1) + gen_texts[-1]
        FinalCaptionList.append(FinalCaptionStr)
        BestCaptionList.append(BestCaptionStr)
    return FinalCaptionList, BestCaptionList

def Demo(RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma, Img):
    args = get_args()
    set_seed(args.seed)

    args.num_iterations = NumIterations
    args.sentence_len = Length
    args.run_type = RunType
    args.control_type = ControlType
    args.sentiment_type = SentimentType
    args.alpha = Alpha
    args.beta = Beta
    args.gamma = Gamma
    args.samples_num = SamplesNum
    args.order = Order 
    img = Img

    run_type = "caption" if args.run_type=="caption" else args.control_type
    if run_type=="sentiment":
        run_type = args.sentiment_type

    if os.path.exists("logger")== False:
        os.mkdir("logger")
    logger = create_logger(
        "logger",'demo_{}_{}_len{}_topk{}_alpha{}_beta{}_gamma{}_lmtemp{}_{}.log'.format(
        run_type, args.order,args.sentence_len,
        args.candidate_k, args.alpha,args.beta,args.gamma,args.lm_temperature,
        time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())))

    logger.info(f"Generating order:{args.order}")
    logger.info(f"Run type:{run_type}")
    logger.info(args)

    # Load pre-trained model (weights)
    lm_model = AutoModelForMaskedLM.from_pretrained(args.lm_model)
    lm_tokenizer = AutoTokenizer.from_pretrained(args.lm_model)
    lm_model.eval()
    clip = CLIP(args.match_model)
    clip.eval()

    lm_model = lm_model.to(args.device)
    clip = clip.to(args.device)

    ## Remove stop words, token mask
    with open(args.stop_words_path,'r',encoding='utf-8') as stop_words_file:
        stop_words = stop_words_file.readlines()
        stop_words_ = [stop_word.rstrip('\n') for stop_word in stop_words]
        stop_words_ += args.add_extra_stopwords
        stop_ids = lm_tokenizer.convert_tokens_to_ids(stop_words_)
        token_mask = torch.ones((1,lm_tokenizer.vocab_size))
        for stop_id in stop_ids:
            token_mask[0,stop_id]=0
        token_mask = token_mask.to(args.device)

    if args.run_type == 'caption':
        FinalCaption, BestCaption = run_caption(args, img, lm_model, lm_tokenizer, clip, token_mask, logger)
    elif args.run_type == 'controllable':
        FinalCaption, BestCaption = run_control(run_type, args, img, lm_model, lm_tokenizer, clip, token_mask, logger)
    else:
        raise Exception('run_type must be caption or controllable!')

    logger.handlers = []

    FinalCaptionFormat, BestCaptionFormat = format_output(SamplesNum, FinalCaption, BestCaption)
    return FinalCaptionFormat, BestCaptionFormat


def RunTypeChange(choice):
    if choice == "caption":
        return gr.update(visible=False)
    elif choice == "controllable":
        return gr.update(visible=True)


def ControlTypeChange(choice):
    if choice == "pos":
        return gr.update(visible=False)
    elif choice == "sentiment":
        return gr.update(visible=True)
    
with gr.Blocks() as demo:

    gr.Markdown("""
    # ConZIC
    ### Controllable Zero-shot Image Captioning by Sampling-Based Polishing
    """)

    with gr.Row():
        with gr.Column():
            RunType = gr.Radio(
                ["caption", "controllable"], value="caption", label="Run Type", info="Select the Run Type"
            )
            ControlType = gr.Radio(
                ["sentiment", "pos"], value="sentiment", label="Control Type", info="Select the Control Type",
                visible=False, interactive=True
            )
            SentimentType = gr.Radio(
                ["positive", "negative"], value="positive", label="Sentiment Type", info="Select the Sentiment Type",
                visible=False, interactive=True
            )
            Order = gr.Radio(
                ["sequential", "shuffle", "random"], value="shuffle", label="Order", info="Generation order of text"
            )

            RunType.change(fn = RunTypeChange, inputs = RunType, outputs = SentimentType)
            RunType.change(fn = RunTypeChange, inputs = RunType, outputs = ControlType)
            ControlType.change(fn = ControlTypeChange, inputs = ControlType, outputs = SentimentType)

            with gr.Row():
                Length = gr.Slider(
                    5, 15, value=10, label="Sentence Length", info="Choose betwen 5 and 15", step=1
                )
                NumIterations = gr.Slider(
                    1, 15, value=10, label="Num Iterations", info="predefined iterations for Gibbs Sampling", step=1
                )
            with gr.Row():
                SamplesNum = gr.Slider(
                    1, 5, value=2, label="Samples Num", step=1
                )
                Alpha = gr.Slider(
                    0, 1, value=0.02, label="Alpha", info="Weight for fluency", step=0.01
                )
            with gr.Row():
                Beta = gr.Slider(
                    1, 5, value=2, label="Beta", info="Weight for image-matching degree", step=0.5
                )
                Gamma = gr.Slider(
                    1, 10, value=5, label="Gamma", info="weight for controllable degree", step=0.5
                )
        with gr.Column():

            Img = gr.Image(label="Upload Picture", type = "pil")

            FinalCaption = gr.Textbox(label="Final Caption", lines=5, placeholder="Final Caption")
            BestCaption = gr.Textbox(label="Best Caption", lines=5, placeholder="Best Caption")
            with gr.Row():
                gen_button = gr.Button("Submit")
                clear_button = gr.Button("Reset")
    
    gen_button.click(
        fn = Demo, 
        inputs = [
            RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma, Img
        ],
        outputs = [
            FinalCaption, BestCaption
        ]
    )
    clear_button.click(
        fn = lambda : [gr.Radio.update(value = 'caption'), gr.Radio.update(value = 'pos'), gr.Radio.update(value = 'positive'),
            gr.Radio.update(value = 'shuffle'), gr.Slider.update(value = 10), gr.Slider.update(value = 10),
            gr.Slider.update(value = 2), gr.Slider.update(value = 0.02), gr.Slider.update(value = 2),
            gr.Slider.update(value = 5)
        ],
        inputs = [
        ],
        outputs = [
           RunType, ControlType, SentimentType, Order, Length, NumIterations, SamplesNum, Alpha, Beta, Gamma
        ]
    )
if __name__ == "__main__":

    nltk.download('wordnet')
    nltk.download('punkt')
    nltk.download('averaged_perceptron_tagger')
    nltk.download('sentiwordnet')

    demo.launch()