Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import random | |
from utils import get_init_text, update_token_mask | |
from sentiments_classifer import batch_texts_POS_Sentiments_analysis | |
from POS_classifier import batch_texts_POS_analysis | |
import time | |
def generate_caption_step(out, gen_idx, mask, temperature=None, top_k=0): | |
""" Generate a word from out[gen_idx] | |
args: | |
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size | |
- gen_idx (int): location for which to generate for | |
- top_k (int): if >0, only sample from the top k most probable words | |
""" | |
logits = out[:, gen_idx] | |
if temperature is not None: | |
logits = logits / temperature | |
probs = F.softmax(logits, dim=-1) | |
probs *= (mask) | |
top_k_probs, top_k_ids = probs.topk(top_k, dim=-1) | |
# top_k_probs = torch.gather(probs, dim=1, index=top_k_ids) | |
return top_k_probs, top_k_ids | |
def sentiment_sequential_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, | |
max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1, | |
max_iters=20,batch_size=1, | |
verbose=True,gamma=5, ctl_signal="positive"): | |
""" Generate one word at a time, in L->R order """ | |
seed_len = len(prompt.split())+1 | |
batch = get_init_text(tokenizer,prompt, max_len, batch_size) | |
image_embeds = clip.compute_image_representation_from_image_instance(image_instance) | |
clip_score_sequence = [] | |
best_clip_score = 0 | |
inp = torch.tensor(batch).to(image_embeds.device) | |
gen_texts = [] | |
for iter_num in range(max_iters): | |
for ii in range(max_len): | |
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) | |
for jj in range(batch_size): | |
inp[jj][seed_len + ii] = tokenizer.mask_token_id | |
inp_ = inp.clone().detach() | |
out = model(inp).logits | |
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature) | |
for jj in range(batch_size): | |
topk_inp = inp_.repeat(top_k, 1) | |
idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long() | |
topk_inp[:, ii + seed_len] = idxs_ | |
repeats = ((idxs_[:, None] == topk_inp).float().sum(1) - 1) # *pos_mask | |
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) | |
sentiment_probs, sentiment_scores, pos_tags, wordnet_pos_tags = batch_texts_POS_Sentiments_analysis( | |
batch_text_list, 1, topk_inp.device, sentiment_ctl=ctl_signal) | |
clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) | |
final_score = alpha * probs + beta * clip_score + gamma * sentiment_probs[None,:] + 0.1 * (1-torch.exp(repeats))[None,:] | |
best_clip_id = final_score.argmax() | |
inp[jj][seed_len + ii] = idxs_[best_clip_id] | |
current_clip_score = clip_ref[jj][best_clip_id] | |
current_senti_score = sentiment_scores[best_clip_id] | |
clip_score_sequence.append(current_clip_score.cpu().item()) | |
if verbose and np.mod(iter_num + 1, 1) == 0: | |
for_print = tokenizer.decode(inp[0]) | |
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) | |
if best_clip_score < current_clip_score.cpu().item(): | |
best_clip_score = current_clip_score.cpu().item() | |
best_caption = cur_text | |
gen_texts.append(cur_text) | |
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}, ctl score {current_senti_score:.3f}:"+ for_print) | |
gen_texts.append(best_caption) | |
clip_score_sequence.append(best_clip_score) | |
return gen_texts, clip_score_sequence | |
def sentiment_shuffle_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, | |
max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1, | |
max_iters=20,batch_size=1, | |
verbose=True,gamma=5, ctl_signal="positive"): | |
""" Generate one word at a time, in random generation order """ | |
seed_len = len(prompt.split())+1 | |
batch = get_init_text(tokenizer,prompt, max_len, batch_size) | |
image_embeds = clip.compute_image_representation_from_image_instance(image_instance) | |
inp = torch.tensor(batch).to(image_embeds.device) | |
clip_score_sequence = [] | |
best_clip_score = 0 | |
random_lst = list(range(max_len)) | |
random.shuffle(random_lst) | |
logger.info(f"Order_list:{random_lst}") | |
gen_texts = [] | |
for iter_num in range(max_iters): | |
for ii in random_lst: | |
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) | |
for jj in range(batch_size): | |
inp[jj][seed_len + ii] = tokenizer.mask_token_id | |
inp_ = inp.clone().detach() | |
out = model(inp).logits | |
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature) | |
for jj in range(batch_size): | |
topk_inp = inp_.repeat(top_k, 1) | |
idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long() | |
topk_inp[:, ii + seed_len] = idxs_ | |
repeats = ((idxs_[:, None] == topk_inp).float().sum(1) - 1) # *pos_mask | |
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) | |
sentiment_probs, sentiment_scores, pos_tags, wordnet_pos_tags = batch_texts_POS_Sentiments_analysis( | |
batch_text_list, 1, topk_inp.device, sentiment_ctl=ctl_signal) | |
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) | |
clip_score,clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) | |
final_score = alpha * probs + beta * clip_score + gamma * sentiment_probs[None,:] + 0.01 * (1-torch.exp(repeats))[None,:] | |
best_clip_id = final_score.argmax() | |
inp[jj][seed_len + ii] = idxs_[best_clip_id] | |
current_clip_score = clip_ref[jj][best_clip_id] | |
current_senti_score = sentiment_scores[best_clip_id] | |
clip_score_sequence.append(current_clip_score.cpu().item()) | |
if verbose and np.mod(iter_num + 1, 1) == 0: | |
for_print = tokenizer.decode(inp[0]) | |
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) | |
if best_clip_score < current_clip_score.cpu().item(): | |
best_clip_score = current_clip_score.cpu().item() | |
best_caption = cur_text | |
gen_texts.append(cur_text) | |
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}, ctl score {current_senti_score:.3f}:"+ for_print) | |
gen_texts.append(best_caption) | |
clip_score_sequence.append(best_clip_score) | |
return gen_texts, clip_score_sequence | |
def POS_sequential_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, | |
max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1,gamma=0.1, | |
max_iters=20,batch_size=1,ctl_signal=["DET"], | |
verbose=True): | |
""" Generate one word at a time, in L->R order """ | |
seed_len = len(prompt.split())+1 | |
templete = False | |
logger.info(ctl_signal) | |
batch = get_init_text(tokenizer,prompt, max_len, batch_size) | |
image_embeds = clip.compute_image_representation_from_image_instance(image_instance) | |
clip_score_sequence = [] | |
best_clip_score = 0 | |
inp = torch.tensor(batch).to(image_embeds.device) | |
gen_texts = [] | |
for iter_num in range(max_iters): | |
for ii in range(max_len): | |
token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) | |
for jj in range(batch_size): | |
inp[jj][seed_len + ii] = tokenizer.mask_token_id | |
inp_ = inp.clone().detach() | |
out = model(inp).logits | |
probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature) | |
for jj in range(batch_size): | |
topk_inp = inp_.repeat(top_k, 1) | |
idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long() | |
topk_inp[:, ii + seed_len] = idxs_ | |
batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) | |
pos_tags, pos_scores = batch_texts_POS_analysis(batch_text_list, ctl_signal, device=idxs_.device) | |
pos_probs = torch.softmax(pos_scores/0.1, dim=-1).to(idxs_.device) | |
clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) | |
final_score = alpha * probs + beta * clip_score + gamma * pos_probs[None, :] | |
best_clip_id = final_score.argmax() | |
inp[jj][seed_len + ii] = idxs_[best_clip_id] | |
current_clip_score = clip_ref[jj][best_clip_id] | |
current_ctl_score = pos_scores[best_clip_id] | |
current_pos_tag = pos_tags[best_clip_id] | |
clip_score_sequence.append(current_clip_score.cpu().item()) | |
if verbose and np.mod(iter_num + 1, 1) == 0: | |
for_print = tokenizer.decode(inp[0]) | |
cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) | |
if best_clip_score < current_clip_score.cpu().item(): | |
best_clip_score = current_clip_score.cpu().item() | |
best_ctl_score = current_ctl_score | |
best_caption = cur_text | |
gen_texts.append(cur_text) | |
logger.info(f"iter {iter_num + 1}, clip score {current_clip_score.cpu().item():.3f}, ctl score {current_ctl_score.cpu().item():.3f}: "+ for_print) | |
logger.info(current_pos_tag) | |
gen_texts.append(best_caption) | |
clip_score_sequence.append(best_clip_score) | |
return gen_texts, clip_score_sequence | |
def control_generate_caption(model, clip, tokenizer,image_instance,token_mask,logger, | |
prompt="", batch_size=10, max_len=25, | |
top_k=100, temperature=1.0, max_iter=500,alpha=0.7,beta=1,gamma=5, | |
ctl_type="sentiment", style_type="positive",pos_type=None,generate_order="sequential"): | |
# controllable funcitions to call | |
start_time = time.time() | |
if ctl_type=="sentiment": #sentiment control | |
if generate_order=="sequential": | |
generate_texts, clip_scores = sentiment_sequential_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger, | |
batch_size=batch_size, max_len=max_len, top_k=top_k, | |
alpha=alpha,beta=beta,gamma=gamma,temperature=temperature, | |
max_iters=max_iter, ctl_signal=style_type) | |
else: | |
generate_texts, clip_scores = sentiment_shuffle_generation(model, clip, tokenizer, image_instance, | |
token_mask, prompt, logger, | |
batch_size=batch_size, max_len=max_len, | |
top_k=top_k, | |
alpha=alpha, beta=beta, gamma=gamma, | |
temperature=temperature, | |
max_iters=max_iter, | |
ctl_signal=style_type) | |
else: ##POS control | |
generate_texts, clip_scores = POS_sequential_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger, | |
batch_size=batch_size, max_len=max_len, top_k=top_k, | |
alpha=alpha,beta=beta,gamma=gamma,temperature=temperature, ctl_signal=pos_type, | |
max_iters=max_iter) | |
logger.info("Finished in %.3fs" % (time.time() - start_time)) | |
logger.info(f"final caption: {generate_texts[-2]}") | |
logger.info(f"best caption: {generate_texts[-1]}") | |
return generate_texts, clip_scores |