Spaces:
Runtime error
Runtime error
import torch | |
import requests | |
from torch import nn | |
from PIL import Image | |
class CLIP(nn.Module): | |
def __init__(self, model_name): | |
super(CLIP, self).__init__() | |
# model name: e.g. openai/clip-vit-base-patch32 | |
print ('Initializing CLIP model...') | |
from transformers import CLIPProcessor, CLIPModel | |
self.model = CLIPModel.from_pretrained(model_name) | |
self.model.eval() | |
self.processor = CLIPProcessor.from_pretrained(model_name) | |
from transformers import CLIPTokenizer | |
self.tokenizer = CLIPTokenizer.from_pretrained(model_name) | |
self.cuda_has_been_checked = False | |
print ('CLIP model initialized.') | |
def check_cuda(self): | |
self.cuda_available = next(self.model.parameters()).is_cuda | |
self.device = next(self.model.parameters()).get_device() | |
if self.cuda_available: | |
print ('Cuda is available.') | |
print ('Device is {}'.format(self.device)) | |
else: | |
print ('Cuda is not available.') | |
print ('Device is {}'.format(self.device)) | |
def compute_image_representation_from_image_path(self, image_path): | |
if not self.cuda_has_been_checked: | |
self.check_cuda() | |
self.cuda_has_been_checked = True | |
else: | |
pass | |
# image_path: the path of the image | |
image = Image.open(image_path) | |
inputs = self.processor(images=image, return_tensors="pt") | |
pixel_values = inputs['pixel_values'] | |
if self.cuda_available: | |
pixel_values = pixel_values.cuda(self.device) | |
visual_outputs = self.model.vision_model(pixel_values=pixel_values) | |
image_embeds = visual_outputs[1] | |
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim] | |
return image_embeds | |
def compute_image_representation_from_image_instance(self, image): | |
if not self.cuda_has_been_checked: | |
self.check_cuda() | |
self.cuda_has_been_checked = True | |
else: | |
pass | |
# image_path: the path of the image | |
inputs = self.processor(images=image, return_tensors="pt") | |
pixel_values = inputs['pixel_values'] | |
if self.cuda_available: | |
pixel_values = pixel_values.cuda(self.device) | |
visual_outputs = self.model.vision_model(pixel_values=pixel_values) | |
image_embeds = visual_outputs[1] | |
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim] | |
return image_embeds | |
def compute_text_representation(self, text_list): | |
if not self.cuda_has_been_checked: | |
self.check_cuda() | |
self.cuda_has_been_checked = True | |
else: | |
pass | |
# text_list: a list of text | |
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt", | |
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True) | |
# self.tokenizer.max_len_single_sentence + 2 = 77 | |
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask'] | |
if self.cuda_available: | |
input_ids = input_ids.cuda(self.device) | |
attention_mask = attention_mask.cuda(self.device) | |
text_outputs = self.model.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask | |
) | |
text_embeds = text_outputs[1] | |
text_embeds = self.model.text_projection(text_embeds) | |
return text_embeds | |
def compute_image_text_similarity_via_embeddings(self, image_embeds, text_embeds): | |
''' | |
image_embeds: 1 x embed_dim | |
text_embeds: len(text_list) x embed_dim | |
''' | |
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) | |
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) | |
logit_scale = self.model.logit_scale.exp() | |
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale | |
logits_per_image = logits_per_text.T | |
return logits_per_image.softmax(dim=1), logits_per_image/logit_scale # 1 x len(text_list) | |
def compute_image_text_similarity_via_raw_text(self, image_embeds, text_list): | |
text_embeds = self.compute_text_representation(text_list) | |
return self.compute_image_text_similarity_via_embeddings(image_embeds, text_embeds) | |
### -------------------- functions for building index ---------------------- ### | |
def compute_batch_index_image_features(self, image_list): | |
''' | |
# list of image instances | |
''' | |
if not self.cuda_has_been_checked: | |
self.check_cuda() | |
self.cuda_has_been_checked = True | |
else: | |
pass | |
# image_path: the path of the image | |
inputs = self.processor(images=image_list, return_tensors="pt") | |
pixel_values = inputs['pixel_values'] | |
if self.cuda_available: | |
pixel_values = pixel_values.cuda(self.device) | |
visual_outputs = self.model.vision_model(pixel_values=pixel_values) | |
image_embeds = visual_outputs[1] | |
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim] | |
return image_embeds # len(image_list) x embed_dim | |
def compute_batch_index_text_representation(self, text_list): | |
if not self.cuda_has_been_checked: | |
self.check_cuda() | |
self.cuda_has_been_checked = True | |
else: | |
pass | |
# text_list: a list of text | |
#text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt") | |
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt", | |
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True) | |
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask'] | |
if self.cuda_available: | |
input_ids = input_ids.cuda(self.device) | |
attention_mask = attention_mask.cuda(self.device) | |
text_outputs = self.model.text_model( | |
input_ids=input_ids, | |
attention_mask=attention_mask | |
) | |
text_embeds = text_outputs[1] | |
text_embeds = self.model.text_projection(text_embeds) | |
return text_embeds | |
#logit_scale = self.model.logit_scale.exp() | |
#text_embeds = text_embeds * logit_scale | |
#return text_embeds | |