import numpy as np import torch import torch.nn.functional as F import random from utils import get_init_text, update_token_mask import time def generate_step(out, gen_idx, temperature=None, top_k=0, sample=False, return_list=True): """ Generate a word from out[gen_idx] args: - out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size - gen_idx (int): location for which to generate for - top_k (int): if >0, only sample from the top k most probable words - sample (Bool): if True, sample from full distribution. Overridden by top_k """ logits = out[:, gen_idx] if temperature is not None: logits = logits / temperature if top_k > 0: kth_vals, kth_idx = logits.topk(top_k, dim=-1) dist = torch.distributions.categorical.Categorical(logits=kth_vals) idx = kth_idx.gather(dim=1, index=dist.sample().unsqueeze(-1)).squeeze(-1) elif sample: dist = torch.distributions.categorical.Categorical(logits=logits) idx = dist.sample().squeeze(-1) else: idx = torch.argmax(logits, dim=-1) return idx.tolist() if return_list else idx def generate_caption_step(out, gen_idx, mask, temperature=None, top_k=100): """ Generate a word from out[gen_idx] args: - out (torch.Tensor): tensor of logits of size (batch_size, seq_len, vocab_size) - gen_idx (int): location for which to generate for - mask (torch.Tensor): (1, vocab_size) - top_k (int): candidate k """ logits = out[:, gen_idx] if temperature is not None: logits = logits / temperature probs = F.softmax(logits, dim=-1) probs *= (mask) top_k_probs, top_k_ids = probs.topk(top_k, dim=-1) return top_k_probs, top_k_ids def sequential_generation(model, clip, tokenizer, image_instance,token_mask, prompt, logger, max_len=15, top_k=100,temperature=None, alpha=0.7,beta=1, max_iters=20,batch_size=1, verbose=True): """ Generate one word at a time, in L->R order """ seed_len = len(prompt.split())+1 batch = get_init_text(tokenizer, prompt, max_len, batch_size) image_embeds = clip.compute_image_representation_from_image_instance(image_instance) clip_score_sequence = [] best_clip_score = 0 inp = torch.tensor(batch).to(image_embeds.device) gen_texts = [] for iter_num in range(max_iters): for ii in range(max_len): token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) for jj in range(batch_size): inp[jj][seed_len + ii] = tokenizer.mask_token_id inp_ = inp.clone().detach() out = model(inp).logits probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature) for jj in range(batch_size): topk_inp = inp_.repeat(top_k, 1) idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long() topk_inp[:, ii + seed_len] = idxs_ batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) final_score = alpha * probs + beta * clip_score best_clip_id = final_score.argmax() inp[jj][seed_len + ii] = idxs_[best_clip_id] current_clip_score = clip_ref[jj][best_clip_id] clip_score_sequence.append(current_clip_score.cpu().item()) if verbose and np.mod(iter_num + 1, 1) == 0: for_print = tokenizer.decode(inp[0]) cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) if best_clip_score < current_clip_score.cpu().item(): best_clip_score = current_clip_score.cpu().item() best_caption = cur_text gen_texts.append(cur_text) logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+ for_print) gen_texts.append(best_caption) clip_score_sequence.append(best_clip_score) return gen_texts, clip_score_sequence def shuffle_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1, max_iters=20,batch_size=1, verbose=True): """ Generate one word at a time, in random generation order """ seed_len = len(prompt.split())+1 batch = get_init_text(tokenizer,prompt, max_len, batch_size) image_embeds = clip.compute_image_representation_from_image_instance(image_instance) inp = torch.tensor(batch).to(image_embeds.device) clip_score_sequence = [] best_clip_score = 0 random_lst = list(range(max_len)) random.shuffle(random_lst) logger.info(f"Order_list:{random_lst}") gen_texts = [] for iter_num in range(max_iters): for ii in random_lst: token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) for jj in range(batch_size): inp[jj][seed_len + ii] = tokenizer.mask_token_id inp_ = inp.clone().detach() out = model(inp).logits probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii,mask=token_mask, top_k=top_k, temperature=temperature) for jj in range(batch_size): topk_inp = inp_.repeat(top_k, 1) topk_inp[:, ii + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long() batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) clip_score,clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) final_score = alpha * probs + beta * clip_score best_clip_id = final_score.argmax() inp[jj][seed_len + ii] = idxs[jj][best_clip_id] current_clip_score = clip_ref[jj][best_clip_id] clip_score_sequence.append(current_clip_score.cpu().item()) if verbose and np.mod(iter_num + 1, 1) == 0: for_print = tokenizer.decode(inp[0]) cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) gen_texts.append(cur_text) if best_clip_score < current_clip_score.cpu().item(): best_clip_score = current_clip_score.cpu().item() best_caption = cur_text logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+for_print) gen_texts.append(best_caption) clip_score_sequence.append(best_clip_score) return gen_texts, clip_score_sequence def span_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, max_len=15, top_k=0,temperature=None, alpha=0.7,beta=1, max_iters=20,batch_size=1,verbose=True): """ Generate multiple words at a time (span generation), in L->R order """ seed_len = len(prompt.split())+1 span_len = 2 batch = get_init_text(tokenizer,prompt, max_len, batch_size) image_embeds = clip.compute_image_representation_from_image_instance(image_instance) clip_score_sequence = [] best_clip_score = 0 inp = torch.tensor(batch).to(image_embeds.device) gen_texts = [] for iter_num in range(max_iters): for span_start in range(0,max_len,span_len): span_end = min(span_start+span_len,max_len) for jj in range(batch_size): inp[jj][seed_len + span_start: seed_len + span_end] = tokenizer.mask_token_id out = model(inp).logits for ii in range(span_start,span_end): token_mask = update_token_mask(tokenizer, token_mask, max_len, ii) inp_ = inp.clone().detach() probs, idxs = generate_caption_step(out, gen_idx=seed_len + ii, mask=token_mask, top_k=top_k, temperature=temperature) for jj in range(batch_size): topk_inp = inp_.repeat(top_k, 1) idxs_ = (idxs[jj] * token_mask[0][idxs[jj]]).long() topk_inp[:, ii + seed_len] = idxs_ batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) final_score = alpha * probs + beta * clip_score best_clip_id = final_score.argmax() inp[jj][seed_len + ii] = idxs_[best_clip_id] current_clip_score = clip_ref[jj][best_clip_id] clip_score_sequence.append(current_clip_score.cpu().item()) if verbose and np.mod(iter_num + 1, 1) == 0: for_print = tokenizer.decode(inp[0]) cur_text = tokenizer.decode(inp[0],skip_special_tokens=True) if best_clip_score < current_clip_score.cpu().item(): best_clip_score = current_clip_score.cpu().item() best_caption = cur_text gen_texts.append(cur_text) logger.info(f"iter {iter_num + 1}, clip score {current_clip_score:.3f}: "+ for_print) gen_texts.append(best_caption) clip_score_sequence.append(best_clip_score) return gen_texts, clip_score_sequence def random_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, max_len=15, top_k=0, temperature=None,alpha=0.7,beta=2, max_iters=300,print_every=10,batch_size=1, verbose=True): """ Generate for one random position at a timestep""" seed_len = len(prompt.split())+1 batch = get_init_text(tokenizer, prompt, max_len, batch_size) image_embeds = clip.compute_image_representation_from_image_instance(image_instance) clip_score_sequence = [] best_clip_score = 0 inp = torch.tensor(batch).to(image_embeds.device) gen_texts = [] for ii in range(max_iters): kk = np.random.randint(0, max_len) token_mask = update_token_mask(tokenizer, token_mask, max_len, kk) for jj in range(batch_size): inp[jj][seed_len + kk] = tokenizer.mask_token_id inp_ = inp.clone().detach() out = model(inp).logits probs, idxs = generate_caption_step(out,gen_idx=seed_len + kk,mask=token_mask, top_k=top_k, temperature=temperature) for jj in range(batch_size): topk_inp = inp_.repeat(top_k, 1) topk_inp[:, kk + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long() batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) clip_score, clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) final_score = alpha * probs + beta * clip_score best_clip_id = final_score.argmax() inp[jj][seed_len + kk] = idxs[jj][best_clip_id] current_clip_score = clip_ref[jj][best_clip_id] clip_score_sequence.append(current_clip_score.cpu().item()) if best_clip_score < current_clip_score.cpu().item(): best_clip_score = current_clip_score.cpu().item() best_caption = tokenizer.decode(inp[0], skip_special_tokens=True) if verbose and np.mod(ii + 1, print_every) == 0: for_print = tokenizer.decode(inp[0]) logger.info(f"iter {ii + 1}, clip score {current_clip_score:.3f}: "+for_print) cur_text = tokenizer.decode(inp[0], skip_special_tokens=True) gen_texts.append(cur_text) gen_texts.append(best_caption) clip_score_sequence.append(best_clip_score) return gen_texts, clip_score_sequence def parallel_generation(model, clip, tokenizer,image_instance,token_mask, prompt, logger, max_len=15, top_k=0, temperature=None, alpha=0.1, beta=1, max_iters=300,batch_size=1,print_every=1, verbose=True): """ Generate for all positions at a time step """ seed_len = len(prompt.split())+1 batch = get_init_text(tokenizer,prompt, max_len, batch_size) image_embeds = clip.compute_image_representation_from_image_instance(image_instance) clip_score_sequence = [] inp = torch.tensor(batch).to(image_embeds.device) gen_texts = [] best_clip_score = 0 for ii in range(max_iters): inp_ = inp.clone().detach() out = model(inp).logits for kk in range(max_len): probs, idxs = generate_caption_step(out, gen_idx=seed_len + kk,mask=token_mask, top_k=top_k, temperature=temperature) for jj in range(batch_size): topk_inp = inp_.repeat(top_k, 1) topk_inp[:, ii + seed_len] = (idxs[jj] * token_mask[0][idxs[jj]]).long() batch_text_list = tokenizer.batch_decode(topk_inp, skip_special_tokens=True) clip_score,clip_ref = clip.compute_image_text_similarity_via_raw_text(image_embeds, batch_text_list) final_score = alpha * probs + beta * clip_score best_clip_id = final_score.argmax() inp[jj][seed_len + kk] = idxs[jj][best_clip_id] current_clip_score = clip_ref[jj][best_clip_id] clip_score_sequence.append(current_clip_score.cpu().item()) if verbose and np.mod(ii, 1) == 0: logger.info(f"iter{ii + 1}, clip score {current_clip_score:.3f}: " + tokenizer.decode(inp[0])) cur_text = tokenizer.decode(inp[0], skip_special_tokens=True) if best_clip_score < current_clip_score.cpu().item(): best_clip_score = current_clip_score.cpu().item() best_caption = cur_text gen_texts.append(cur_text) gen_texts.append(best_caption) clip_score_sequence.append(best_clip_score) return gen_texts, clip_score_sequence def generate_caption(model, clip, tokenizer,image_instance,token_mask,logger, prompt="", batch_size=1, max_len=15, top_k=100, temperature=1.0, max_iter=500,alpha=0.7,beta=1, generate_order="sequential"): # main generation functions to call start_time = time.time() if generate_order=="sequential": generate_texts, clip_scores = sequential_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger, batch_size=batch_size, max_len=max_len, top_k=top_k, alpha=alpha,beta=beta,temperature=temperature, max_iters=max_iter) elif generate_order=="shuffle": # max_iter = 15 generate_texts, clip_scores = shuffle_generation(model, clip, tokenizer,image_instance,token_mask,prompt, logger, batch_size=batch_size, max_len=max_len, top_k=top_k, alpha=alpha,beta=beta,temperature=temperature,max_iters=max_iter) elif generate_order=="random": max_iter *= max_len print_every = max_len generate_texts, clip_scores = random_generation(model, clip, tokenizer,image_instance,token_mask,prompt,logger, max_len=max_len, top_k=top_k,alpha=alpha,beta=beta,print_every=print_every, temperature=temperature, max_iters=max_iter,verbose=True) elif generate_order=="span": max_iter = max_iter generate_texts, clip_scores = span_generation(model, clip, tokenizer, image_instance, token_mask, prompt, logger, batch_size=batch_size, max_len=max_len, top_k=top_k, alpha=alpha,beta=beta,temperature=temperature, max_iters=max_iter) elif generate_order=="parallel": generate_texts, clip_scores = parallel_generation(model, clip, tokenizer,image_instance,token_mask,prompt, logger, max_len=max_len, temperature=temperature,top_k=top_k,alpha=alpha,beta=beta, max_iters=max_iter,verbose=True) logger.info("Finished in %.3fs" % (time.time() - start_time)) logger.info(f"final caption: {generate_texts[-2]}") logger.info(f"best caption: {generate_texts[-1]}") return generate_texts, clip_scores