Spaces:
Running
on
A10G
Running
on
A10G
File size: 8,612 Bytes
12b7f59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
DDIMScheduler,
StableDiffusionPipeline,
)
import torchvision.transforms.functional as TF
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
sys.path.append('./')
from zero123 import Zero123Pipeline
class Zero123(nn.Module):
def __init__(self, device, fp16=True, t_range=[0.02, 0.98]):
super().__init__()
self.device = device
self.fp16 = fp16
self.dtype = torch.float16 if fp16 else torch.float32
self.pipe = Zero123Pipeline.from_pretrained(
# "bennyguo/zero123-diffusers",
"bennyguo/zero123-xl-diffusers",
# './model_cache/zero123_xl',
variant="fp16_ema" if self.fp16 else None,
torch_dtype=self.dtype,
).to(self.device)
# for param in self.pipe.parameters():
# param.requires_grad = False
self.pipe.image_encoder.eval()
self.pipe.vae.eval()
self.pipe.unet.eval()
self.pipe.clip_camera_projection.eval()
self.vae = self.pipe.vae
self.unet = self.pipe.unet
self.pipe.set_progress_bar_config(disable=True)
self.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
self.num_train_timesteps = self.scheduler.config.num_train_timesteps
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
self.embeddings = None
@torch.no_grad()
def get_img_embeds(self, x):
# x: image tensor in [0, 1]
x = F.interpolate(x, (256, 256), mode='bilinear', align_corners=False)
x_pil = [TF.to_pil_image(image) for image in x]
x_clip = self.pipe.feature_extractor(images=x_pil, return_tensors="pt").pixel_values.to(device=self.device, dtype=self.dtype)
c = self.pipe.image_encoder(x_clip).image_embeds
v = self.encode_imgs(x.to(self.dtype)) / self.vae.config.scaling_factor
self.embeddings = [c, v]
@torch.no_grad()
def refine(self, pred_rgb, polar, azimuth, radius,
guidance_scale=5, steps=50, strength=0.8,
):
batch_size = pred_rgb.shape[0]
self.scheduler.set_timesteps(steps)
if strength == 0:
init_step = 0
latents = torch.randn((1, 4, 32, 32), device=self.device, dtype=self.dtype)
else:
init_step = int(steps * strength)
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])
T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
cc_emb = self.pipe.clip_camera_projection(cc_emb)
cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
for i, t in enumerate(self.scheduler.timesteps[init_step:]):
x_in = torch.cat([latents] * 2)
t_in = torch.cat([t.view(1)] * 2).to(self.device)
noise_pred = self.unet(
torch.cat([x_in, vae_emb], dim=1),
t_in.to(self.unet.dtype),
encoder_hidden_states=cc_emb,
).sample
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
imgs = self.decode_latents(latents) # [1, 3, 256, 256]
return imgs
def train_step(self, pred_rgb, polar, azimuth, radius, step_ratio=None, guidance_scale=5, as_latent=False):
# pred_rgb: tensor [1, 3, H, W] in [0, 1]
batch_size = pred_rgb.shape[0]
if as_latent:
latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
else:
pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
if step_ratio is not None:
# dreamtime-like
# t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
else:
t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)
w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)
with torch.no_grad():
noise = torch.randn_like(latents)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
x_in = torch.cat([latents_noisy] * 2)
t_in = torch.cat([t] * 2)
T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
cc_emb = self.pipe.clip_camera_projection(cc_emb)
cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)
vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)
noise_pred = self.unet(
torch.cat([x_in, vae_emb], dim=1),
t_in.to(self.unet.dtype),
encoder_hidden_states=cc_emb,
).sample
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
grad = w * (noise_pred - noise)
grad = torch.nan_to_num(grad)
target = (latents - grad).detach()
loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')
return loss
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs, mode=False):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
if mode:
latents = posterior.mode()
else:
latents = posterior.sample()
latents = latents * self.vae.config.scaling_factor
return latents
if __name__ == '__main__':
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument('input', type=str)
parser.add_argument('--polar', type=float, default=0, help='delta polar angle in [-90, 90]')
parser.add_argument('--azimuth', type=float, default=0, help='delta azimuth angle in [-180, 180]')
parser.add_argument('--radius', type=float, default=0, help='delta camera radius multiplier in [-0.5, 0.5]')
opt = parser.parse_args()
device = torch.device('cuda')
print(f'[INFO] loading image from {opt.input} ...')
image = cv2.imread(opt.input, cv2.IMREAD_UNCHANGED)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA)
image = image.astype(np.float32) / 255.0
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).contiguous().to(device)
print(f'[INFO] loading model ...')
zero123 = Zero123(device)
print(f'[INFO] running model ...')
zero123.get_img_embeds(image)
while True:
outputs = zero123.refine(image, polar=[opt.polar], azimuth=[opt.azimuth], radius=[opt.radius], strength=0)
plt.imshow(outputs.float().cpu().numpy().transpose(0, 2, 3, 1)[0])
plt.show() |