Spaces:
Runtime error
Runtime error
File size: 25,789 Bytes
21c4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import os
import cv2
import time
import tqdm
import numpy as np
import torch
import torch.nn.functional as F
import rembg
from cam_utils import orbit_camera, OrbitCamera
from gs_renderer_4d import Renderer, MiniCam
from grid_put import mipmap_linear_grid_put_2d
import imageio
import copy
class GUI:
def __init__(self, opt):
self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.gui = opt.gui # enable gui
self.W = opt.W
self.H = opt.H
self.cam = OrbitCamera(opt.W, opt.H, r=opt.radius, fovy=opt.fovy)
self.mode = "image"
# self.seed = "random"
self.seed = 888
self.buffer_image = np.ones((self.W, self.H, 3), dtype=np.float32)
self.need_update = True # update buffer_image
# models
self.device = torch.device("cuda")
self.bg_remover = None
self.guidance_sd = None
self.guidance_zero123 = None
self.guidance_svd = None
self.enable_sd = False
self.enable_zero123 = False
self.enable_svd = False
# renderer
self.renderer = Renderer(self.opt, sh_degree=self.opt.sh_degree)
self.gaussain_scale_factor = 1
# input image
self.input_img = None
self.input_mask = None
self.input_img_torch = None
self.input_mask_torch = None
self.overlay_input_img = False
self.overlay_input_img_ratio = 0.5
self.input_img_list = None
self.input_mask_list = None
self.input_img_torch_list = None
self.input_mask_torch_list = None
# input text
self.prompt = ""
self.negative_prompt = ""
# training stuff
self.training = False
self.optimizer = None
self.step = 0
self.train_steps = 1 # steps per rendering loop
# load input data from cmdline
if self.opt.input is not None: # True
self.load_input(self.opt.input) # load imgs, if has bg, then rm bg; or just load imgs
# override prompt from cmdline
if self.opt.prompt is not None: # None
self.prompt = self.opt.prompt
# override if provide a checkpoint
if self.opt.load is not None: # not None
self.renderer.initialize(self.opt.load)
# self.renderer.gaussians.load_model(opt.outdir, opt.save_path)
else:
# initialize gaussians to a blob
self.renderer.initialize(num_pts=self.opt.num_pts)
self.seed_everything()
def seed_everything(self):
try:
seed = int(self.seed)
except:
seed = np.random.randint(0, 1000000)
print(f'Seed: {seed:d}')
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
self.last_seed = seed
def prepare_train(self):
self.step = 0
# setup training
self.renderer.gaussians.training_setup(self.opt)
# # do not do progressive sh-level
self.renderer.gaussians.active_sh_degree = self.renderer.gaussians.max_sh_degree
self.optimizer = self.renderer.gaussians.optimizer
# default camera
if self.opt.mvdream or self.opt.imagedream:
# the second view is the front view for mvdream/imagedream.
pose = orbit_camera(self.opt.elevation, 90, self.opt.radius)
else:
pose = orbit_camera(self.opt.elevation, 0, self.opt.radius)
self.fixed_cam = MiniCam(
pose,
self.opt.ref_size,
self.opt.ref_size,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
)
self.enable_sd = self.opt.lambda_sd > 0
self.enable_zero123 = self.opt.lambda_zero123 > 0
self.enable_svd = self.opt.lambda_svd > 0 and self.input_img is not None
# lazy load guidance model
if self.guidance_sd is None and self.enable_sd:
if self.opt.mvdream:
print(f"[INFO] loading MVDream...")
from guidance.mvdream_utils import MVDream
self.guidance_sd = MVDream(self.device)
print(f"[INFO] loaded MVDream!")
elif self.opt.imagedream:
print(f"[INFO] loading ImageDream...")
from guidance.imagedream_utils import ImageDream
self.guidance_sd = ImageDream(self.device)
print(f"[INFO] loaded ImageDream!")
else:
print(f"[INFO] loading SD...")
from guidance.sd_utils import StableDiffusion
self.guidance_sd = StableDiffusion(self.device)
print(f"[INFO] loaded SD!")
if self.guidance_zero123 is None and self.enable_zero123:
print(f"[INFO] loading zero123...")
from guidance.zero123_utils import Zero123
if self.opt.stable_zero123:
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/stable-zero123-diffusers')
else:
self.guidance_zero123 = Zero123(self.device, model_key='ashawkey/zero123-xl-diffusers')
print(f"[INFO] loaded zero123!")
if self.guidance_svd is None and self.enable_svd: # False
print(f"[INFO] loading SVD...")
from guidance.svd_utils import StableVideoDiffusion
self.guidance_svd = StableVideoDiffusion(self.device)
print(f"[INFO] loaded SVD!")
# input image
if self.input_img is not None:
self.input_img_torch = torch.from_numpy(self.input_img).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_img_torch = F.interpolate(self.input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
self.input_mask_torch = torch.from_numpy(self.input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device)
self.input_mask_torch = F.interpolate(self.input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False)
if self.input_img_list is not None:
self.input_img_torch_list = [torch.from_numpy(input_img).permute(2, 0, 1).unsqueeze(0).to(self.device) for input_img in self.input_img_list]
self.input_img_torch_list = [F.interpolate(input_img_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False) for input_img_torch in self.input_img_torch_list]
self.input_mask_torch_list = [torch.from_numpy(input_mask).permute(2, 0, 1).unsqueeze(0).to(self.device) for input_mask in self.input_mask_list]
self.input_mask_torch_list = [F.interpolate(input_mask_torch, (self.opt.ref_size, self.opt.ref_size), mode="bilinear", align_corners=False) for input_mask_torch in self.input_mask_torch_list]
# prepare embeddings
with torch.no_grad():
if self.enable_sd:
if self.opt.imagedream:
img_pos_list, img_neg_list, ip_pos_list, ip_neg_list, emb_pos_list, emb_neg_list = [], [], [], [], [], []
for _ in range(self.opt.n_views):
for input_img_torch in self.input_img_torch_list:
img_pos, img_neg, ip_pos, ip_neg, emb_pos, emb_neg = self.guidance_sd.get_image_text_embeds(input_img_torch, [self.prompt], [self.negative_prompt])
img_pos_list.append(img_pos)
img_neg_list.append(img_neg)
ip_pos_list.append(ip_pos)
ip_neg_list.append(ip_neg)
emb_pos_list.append(emb_pos)
emb_neg_list.append(emb_neg)
self.guidance_sd.image_embeddings['pos'] = torch.cat(img_pos_list, 0)
self.guidance_sd.image_embeddings['neg'] = torch.cat(img_pos_list, 0)
self.guidance_sd.image_embeddings['ip_img'] = torch.cat(ip_pos_list, 0)
self.guidance_sd.image_embeddings['neg_ip_img'] = torch.cat(ip_neg_list, 0)
self.guidance_sd.embeddings['pos'] = torch.cat(emb_pos_list, 0)
self.guidance_sd.embeddings['neg'] = torch.cat(emb_neg_list, 0)
else:
self.guidance_sd.get_text_embeds([self.prompt], [self.negative_prompt])
if self.enable_zero123:
c_list, v_list = [], []
for _ in range(self.opt.n_views):
for input_img_torch in self.input_img_torch_list:
c, v = self.guidance_zero123.get_img_embeds(input_img_torch)
c_list.append(c)
v_list.append(v)
self.guidance_zero123.embeddings = [torch.cat(c_list, 0), torch.cat(v_list, 0)]
if self.enable_svd:
self.guidance_svd.get_img_embeds(self.input_img)
def train_step(self):
starter = torch.cuda.Event(enable_timing=True)
ender = torch.cuda.Event(enable_timing=True)
starter.record()
for _ in range(self.train_steps): # 1
self.step += 1 # self.step starts from 0
step_ratio = min(1, self.step / self.opt.iters) # 1, step / 500
# update lr
self.renderer.gaussians.update_learning_rate(self.step)
loss = 0
self.renderer.prepare_render()
### known view
if not self.opt.imagedream:
for b_idx in range(self.opt.batch_size):
cur_cam = copy.deepcopy(self.fixed_cam)
cur_cam.time = b_idx
out = self.renderer.render(cur_cam)
# rgb loss
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
loss = loss + 10000 * step_ratio * F.mse_loss(image, self.input_img_torch_list[b_idx]) / self.opt.batch_size
# mask loss
mask = out["alpha"].unsqueeze(0) # [1, 1, H, W] in [0, 1]
loss = loss + 1000 * step_ratio * F.mse_loss(mask, self.input_mask_torch_list[b_idx]) / self.opt.batch_size
### novel view (manual batch)
render_resolution = 128 if step_ratio < 0.3 else (256 if step_ratio < 0.6 else 512)
# render_resolution = 512
images = []
poses = []
vers, hors, radii = [], [], []
# avoid too large elevation (> 80 or < -80), and make sure it always cover [-30, 30]
min_ver = max(min(self.opt.min_ver, self.opt.min_ver - self.opt.elevation), -80 - self.opt.elevation)
max_ver = min(max(self.opt.max_ver, self.opt.max_ver - self.opt.elevation), 80 - self.opt.elevation)
for _ in range(self.opt.n_views):
for b_idx in range(self.opt.batch_size):
# render random view
ver = np.random.randint(min_ver, max_ver)
hor = np.random.randint(-180, 180)
radius = 0
vers.append(ver)
hors.append(hor)
radii.append(radius)
pose = orbit_camera(self.opt.elevation + ver, hor, self.opt.radius + radius)
poses.append(pose)
cur_cam = MiniCam(pose, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far, time=b_idx)
bg_color = torch.tensor([1, 1, 1] if np.random.rand() > self.opt.invert_bg_prob else [0, 0, 0], dtype=torch.float32, device="cuda")
out = self.renderer.render(cur_cam, bg_color=bg_color)
image = out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
images.append(image)
# enable mvdream training
if self.opt.mvdream or self.opt.imagedream: # False
for view_i in range(1, 4):
pose_i = orbit_camera(self.opt.elevation + ver, hor + 90 * view_i, self.opt.radius + radius)
poses.append(pose_i)
cur_cam_i = MiniCam(pose_i, render_resolution, render_resolution, self.cam.fovy, self.cam.fovx, self.cam.near, self.cam.far)
# bg_color = torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32, device="cuda")
out_i = self.renderer.render(cur_cam_i, bg_color=bg_color)
image = out_i["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
images.append(image)
images = torch.cat(images, dim=0)
poses = torch.from_numpy(np.stack(poses, axis=0)).to(self.device)
# guidance loss
if self.enable_sd:
if self.opt.mvdream or self.opt.imagedream:
loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, poses, step_ratio)
else:
loss = loss + self.opt.lambda_sd * self.guidance_sd.train_step(images, step_ratio)
if self.enable_zero123:
loss = loss + self.opt.lambda_zero123 * self.guidance_zero123.train_step(images, vers, hors, radii, step_ratio) / (self.opt.batch_size * self.opt.n_views)
if self.enable_svd:
loss = loss + self.opt.lambda_svd * self.guidance_svd.train_step(images, step_ratio)
# optimize step
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
# densify and prune
if self.step >= self.opt.density_start_iter and self.step <= self.opt.density_end_iter:
viewspace_point_tensor, visibility_filter, radii = out["viewspace_points"], out["visibility_filter"], out["radii"]
self.renderer.gaussians.max_radii2D[visibility_filter] = torch.max(self.renderer.gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
self.renderer.gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if self.step % self.opt.densification_interval == 0:
# size_threshold = 20 if self.step > self.opt.opacity_reset_interval else None
self.renderer.gaussians.densify_and_prune(self.opt.densify_grad_threshold, min_opacity=0.01, extent=0.5, max_screen_size=1)
if self.step % self.opt.opacity_reset_interval == 0:
self.renderer.gaussians.reset_opacity()
ender.record()
torch.cuda.synchronize()
t = starter.elapsed_time(ender)
self.need_update = True
def load_input(self, file):
if self.opt.data_mode == 'c4d':
file_list = [os.path.join(file, f'{x * self.opt.downsample_rate}.png') for x in range(self.opt.batch_size)]
elif self.opt.data_mode == 'svd':
# file_list = [file.replace('.png', f'_frames/{x* self.opt.downsample_rate:03d}_rgba.png') for x in range(self.opt.batch_size)]
# file_list = [x if os.path.exists(x) else (x.replace('_rgba.png', '.png')) for x in file_list]
file_list = [file.replace('.png', f'_frames/{x* self.opt.downsample_rate:03d}.png') for x in range(self.opt.batch_size)]
else:
raise NotImplementedError
self.input_img_list, self.input_mask_list = [], []
for file in file_list:
# load image
print(f'[INFO] load image from {file}...')
img = cv2.imread(file, cv2.IMREAD_UNCHANGED)
if img.shape[-1] == 3:
if self.bg_remover is None:
self.bg_remover = rembg.new_session()
img = rembg.remove(img, session=self.bg_remover)
# cv2.imwrite(file.replace('.png', '_rgba.png'), img)
img = cv2.resize(img, (self.W, self.H), interpolation=cv2.INTER_AREA)
img = img.astype(np.float32) / 255.0
input_mask = img[..., 3:]
# white bg
input_img = img[..., :3] * input_mask + (1 - input_mask)
# bgr to rgb
input_img = input_img[..., ::-1].copy()
self.input_img_list.append(input_img)
self.input_mask_list.append(input_mask)
@torch.no_grad()
def save_model(self, mode='geo', texture_size=1024, interp=1):
os.makedirs(self.opt.outdir, exist_ok=True)
if mode == 'geo':
path = f'logs/{opt.save_path}_mesh_{t:03d}.ply'
mesh = self.renderer.gaussians.extract_mesh_t(path, self.opt.density_thresh, t=t)
mesh.write_ply(path)
elif mode == 'geo+tex':
from mesh import Mesh, safe_normalize
os.makedirs(os.path.join(self.opt.outdir, self.opt.save_path+'_meshes'), exist_ok=True)
for t in range(self.opt.batch_size):
path = os.path.join(self.opt.outdir, self.opt.save_path+'_meshes', f'{t:03d}.obj')
mesh = self.renderer.gaussians.extract_mesh_t(path, self.opt.density_thresh, t=t)
# perform texture extraction
print(f"[INFO] unwrap uv...")
h = w = texture_size
mesh.auto_uv()
mesh.auto_normal()
albedo = torch.zeros((h, w, 3), device=self.device, dtype=torch.float32)
cnt = torch.zeros((h, w, 1), device=self.device, dtype=torch.float32)
vers = [0] * 8 + [-45] * 8 + [45] * 8 + [-89.9, 89.9]
hors = [0, 45, -45, 90, -90, 135, -135, 180] * 3 + [0, 0]
render_resolution = 512
import nvdiffrast.torch as dr
if not self.opt.force_cuda_rast and (not self.opt.gui or os.name == 'nt'):
glctx = dr.RasterizeGLContext()
else:
glctx = dr.RasterizeCudaContext()
for ver, hor in zip(vers, hors):
# render image
pose = orbit_camera(ver, hor, self.cam.radius)
cur_cam = MiniCam(
pose,
render_resolution,
render_resolution,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
time=t
)
cur_out = self.renderer.render(cur_cam)
rgbs = cur_out["image"].unsqueeze(0) # [1, 3, H, W] in [0, 1]
# get coordinate in texture image
pose = torch.from_numpy(pose.astype(np.float32)).to(self.device)
proj = torch.from_numpy(self.cam.perspective.astype(np.float32)).to(self.device)
v_cam = torch.matmul(F.pad(mesh.v, pad=(0, 1), mode='constant', value=1.0), torch.inverse(pose).T).float().unsqueeze(0)
v_clip = v_cam @ proj.T
rast, rast_db = dr.rasterize(glctx, v_clip, mesh.f, (render_resolution, render_resolution))
depth, _ = dr.interpolate(-v_cam[..., [2]], rast, mesh.f) # [1, H, W, 1]
depth = depth.squeeze(0) # [H, W, 1]
alpha = (rast[0, ..., 3:] > 0).float()
uvs, _ = dr.interpolate(mesh.vt.unsqueeze(0), rast, mesh.ft) # [1, 512, 512, 2] in [0, 1]
# use normal to produce a back-project mask
normal, _ = dr.interpolate(mesh.vn.unsqueeze(0).contiguous(), rast, mesh.fn)
normal = safe_normalize(normal[0])
# rotated normal (where [0, 0, 1] always faces camera)
rot_normal = normal @ pose[:3, :3]
viewcos = rot_normal[..., [2]]
mask = (alpha > 0) & (viewcos > 0.5) # [H, W, 1]
mask = mask.view(-1)
uvs = uvs.view(-1, 2).clamp(0, 1)[mask]
rgbs = rgbs.view(3, -1).permute(1, 0)[mask].contiguous()
# update texture image
cur_albedo, cur_cnt = mipmap_linear_grid_put_2d(
h, w,
uvs[..., [1, 0]] * 2 - 1,
rgbs,
min_resolution=256,
return_count=True,
)
mask = cnt.squeeze(-1) < 0.1
albedo[mask] += cur_albedo[mask]
cnt[mask] += cur_cnt[mask]
mask = cnt.squeeze(-1) > 0
albedo[mask] = albedo[mask] / cnt[mask].repeat(1, 3)
mask = mask.view(h, w)
albedo = albedo.detach().cpu().numpy()
mask = mask.detach().cpu().numpy()
# dilate texture
from sklearn.neighbors import NearestNeighbors
from scipy.ndimage import binary_dilation, binary_erosion
inpaint_region = binary_dilation(mask, iterations=32)
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=3)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(
search_coords
)
_, indices = knn.kneighbors(inpaint_coords)
albedo[tuple(inpaint_coords.T)] = albedo[tuple(search_coords[indices[:, 0]].T)]
mesh.albedo = torch.from_numpy(albedo).to(self.device)
mesh.write(path)
elif mode == 'frames':
os.makedirs(os.path.join(self.opt.outdir, self.opt.save_path+'_frames'), exist_ok=True)
for t in range(self.opt.batch_size * interp):
tt = t / interp
path = os.path.join(self.opt.outdir, self.opt.save_path+'_frames', f'{t:03d}.ply')
self.renderer.gaussians.save_frame_ply(path, tt)
else:
path = os.path.join(self.opt.outdir, self.opt.save_path + '_4d_model.ply')
self.renderer.gaussians.save_ply(path)
self.renderer.gaussians.save_deformation(self.opt.outdir, self.opt.save_path)
print(f"[INFO] save model to {path}.")
# no gui mode
def train(self, iters=500, ui=False):
if self.gui:
from visualizer.visergui import ViserViewer
self.viser_gui = ViserViewer(device="cuda", viewer_port=8080)
if iters > 0:
self.prepare_train()
if self.gui:
self.viser_gui.set_renderer(self.renderer, self.fixed_cam)
for i in tqdm.trange(iters):
self.train_step()
if self.gui:
self.viser_gui.update()
if self.opt.mesh_format == 'frames':
self.save_model(mode='frames', interp=4)
elif self.opt.mesh_format == 'obj':
self.save_model(mode='geo+tex')
if self.opt.save_model:
self.save_model(mode='model')
# render eval
image_list =[]
nframes = self.opt.batch_size * 7 + 15 * 7
hor = 180
delta_hor = 45 / 15
delta_time = 1
for i in range(8):
time = 0
for j in range(self.opt.batch_size + 15):
pose = orbit_camera(self.opt.elevation, hor-180, self.opt.radius)
cur_cam = MiniCam(
pose,
512,
512,
self.cam.fovy,
self.cam.fovx,
self.cam.near,
self.cam.far,
time=time
)
with torch.no_grad():
outputs = self.renderer.render(cur_cam)
out = outputs["image"].cpu().detach().numpy().astype(np.float32)
out = np.transpose(out, (1, 2, 0))
out = np.uint8(out*255)
image_list.append(out)
time = (time + delta_time) % self.opt.batch_size
if j >= self.opt.batch_size:
hor = (hor+delta_hor) % 360
imageio.mimwrite(f'vis_data/{opt.save_path}.mp4', image_list, fps=7)
if self.gui:
while True:
self.viser_gui.update()
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, help="path to the yaml config file")
args, extras = parser.parse_known_args()
# override default config from cli
opt = OmegaConf.merge(OmegaConf.load(args.config), OmegaConf.from_cli(extras))
opt.save_path = os.path.splitext(os.path.basename(opt.input))[0] if opt.save_path == '' else opt.save_path
# auto find mesh from stage 1
opt.load = os.path.join(opt.outdir, opt.save_path + '_model.ply')
gui = GUI(opt)
gui.train(opt.iters)
# python main_4d.py --config configs/4d_low.yaml input=data/CONSISTENT4D_DATA/in-the-wild/blooming_rose |