File size: 16,134 Bytes
21c4e64
 
 
 
 
 
 
0f432df
21c4e64
e8ff8db
 
 
5b9bbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e618667
 
ea60d75
e8ff8db
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9bbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c4e64
 
 
 
 
 
5b9bbe2
21c4e64
 
 
5b9bbe2
 
 
21c4e64
b601d28
fc94f83
5b9bbe2
21c4e64
 
 
5b9bbe2
 
 
 
21c4e64
5b9bbe2
 
 
 
 
 
21c4e64
 
5b9bbe2
 
21c4e64
 
 
5b9bbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c122ae9
5b9bbe2
 
 
 
21c4e64
 
c54a4cd
21c4e64
5b9bbe2
 
21c4e64
 
b73b3dd
 
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
5b9bbe2
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdc7dcc
21c4e64
 
 
5b9bbe2
 
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9bbe2
21c4e64
 
 
 
cdc7dcc
 
 
 
 
b73b3dd
 
21c4e64
5b9bbe2
 
21c4e64
 
 
5b9bbe2
 
 
 
 
 
 
21c4e64
 
b73b3dd
21c4e64
 
 
e618667
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gradio as gr
import os
from PIL import Image
import subprocess
from gradio_model4dgs import Model4DGS
import numpy
import hashlib
import shlex

subprocess.run(shlex.split("pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
# subprocess.run(shlex.split("pip install xformers==0.0.23 --no-deps --index-url https://download.pytorch.org/whl/cu118"))

import rembg
import glob
import cv2
import numpy as np
from diffusers import StableVideoDiffusionPipeline
from scripts.gen_vid import * 

import sys
sys.path.append('lgm')
from safetensors.torch import load_file
from kiui.cam import orbit_camera
from core.options import config_defaults, Options
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline
from infer_demo import process as process_lgm

from main_4d_demo import process as process_dg4d
 


import spaces




from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors")

js_func = """
function refresh() {
    const url = new URL(window.location);

    if (url.searchParams.get('__theme') !== 'light') {
        url.searchParams.set('__theme', 'light');
        window.location.href = url.href;
    }
}
"""


device = torch.device('cuda')
# device = torch.device('cpu')

session = rembg.new_session(model_name='u2net')

pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
pipe.to(device)

opt = config_defaults['big']
opt.resume = ckpt_path
# model
model = LGM(opt)

# resume pretrained checkpoint
if opt.resume is not None:
    if opt.resume.endswith('safetensors'):
        ckpt = load_file(opt.resume, device='cpu')
    else:
        ckpt = torch.load(opt.resume, map_location='cpu')
    model.load_state_dict(ckpt, strict=False)
    print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
    print(f'[WARN] model randomly initialized, are you sure?')

# device
model = model.half().to(device)
model.eval()
rays_embeddings = model.prepare_default_rays(device)

# load image dream
pipe_mvdream = MVDreamPipeline.from_pretrained(
    "ashawkey/imagedream-ipmv-diffusers", # remote weights
    torch_dtype=torch.float16,
    trust_remote_code=True,
    # local_files_only=True,
)
pipe_mvdream = pipe_mvdream.to(device)

from guidance.zero123_utils import Zero123
guidance_zero123 = Zero123(device, model_key='ashawkey/stable-zero123-diffusers')

def preprocess(path, recenter=True, size=256, border_ratio=0.2):
    files = [path]
    out_dir = os.path.dirname(path)

    for file in files:

        out_base = os.path.basename(file).split('.')[0]
        out_rgba = os.path.join(out_dir, out_base + '_rgba.png')

        # load image
        print(f'[INFO] loading image {file}...')
        image = cv2.imread(file, cv2.IMREAD_UNCHANGED)
        
        # carve background
        print(f'[INFO] background removal...')
        carved_image = rembg.remove(image, session=session) # [H, W, 4]
        mask = carved_image[..., -1] > 0

        # recenter
        if recenter:
            print(f'[INFO] recenter...')
            final_rgba = np.zeros((size, size, 4), dtype=np.uint8)
            
            coords = np.nonzero(mask)
            x_min, x_max = coords[0].min(), coords[0].max()
            y_min, y_max = coords[1].min(), coords[1].max()
            h = x_max - x_min
            w = y_max - y_min
            desired_size = int(size * (1 - border_ratio))
            scale = desired_size / max(h, w)
            h2 = int(h * scale)
            w2 = int(w * scale)
            x2_min = (size - h2) // 2
            x2_max = x2_min + h2
            y2_min = (size - w2) // 2
            y2_max = y2_min + w2
            final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
            
        else:
            final_rgba = carved_image
        
        # write image
        cv2.imwrite(out_rgba, final_rgba)

def gen_vid(input_path, seed, bg='white'):
    name = input_path.split('/')[-1].split('.')[0]
    input_dir = os.path.dirname(input_path)
    height, width = 512, 512

    image = load_image(input_path, width, height, bg)

    generator = torch.manual_seed(seed)
    # frames = pipe(image, height, width, decode_chunk_size=2, generator=generator).frames[0]
    frames = pipe(image, height, width, generator=generator).frames[0]

    imageio.mimwrite(f"{input_dir}/{name}_generated.mp4", frames, fps=7)
    os.makedirs(f"{input_dir}/{name}_frames", exist_ok=True)
    for idx, img in enumerate(frames):
        img.save(f"{input_dir}/{name}_frames/{idx:03}.png")

# check if there is a picture uploaded or selected
def check_img_input(control_image):
    if control_image is None:
        raise gr.Error("Please select or upload an input image")

# check if there is a picture uploaded or selected
def check_video_3d_input(image_block: Image.Image):
    img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
    if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')):
        raise gr.Error("Please generate a video first")
    if not os.path.exists(os.path.join('vis_data', f'{img_hash}_rgba_static.mp4')):
        raise gr.Error("Please generate a 3D first")



@spaces.GPU()
def optimize_stage_0(image_block: Image.Image, preprocess_chk: bool, seed_slider: int):
    if not os.path.exists('tmp_data'):
        os.makedirs('tmp_data')
    img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
    if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')):
        if preprocess_chk:
            # save image to a designated path
            image_block.save(os.path.join('tmp_data', f'{img_hash}.png'))

            # preprocess image
            # print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}')
            # subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True)
            preprocess(os.path.join("tmp_data", f"{img_hash}.png"))
        else:
            image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png'))

    # stage 1
    # subprocess.run(f'export MKL_THREADING_LAYER=GNU;export MKL_SERVICE_FORCE_INTEL=1;python scripts/gen_vid.py --path tmp_data/{img_hash}_rgba.png --seed {seed_slider} --bg white', shell=True)
    gen_vid(f'tmp_data/{img_hash}_rgba.png', seed_slider)
    # return [os.path.join('logs', 'tmp_rgba_model.ply')]
    return os.path.join('tmp_data', f'{img_hash}_rgba_generated.mp4')


@spaces.GPU()
def optimize_stage_1(image_block: Image.Image, preprocess_chk: bool, seed_slider: int):
    if not os.path.exists('tmp_data'):
        os.makedirs('tmp_data')
    img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()
    if not os.path.exists(os.path.join('tmp_data', f'{img_hash}_rgba.png')):
        if preprocess_chk:
            # save image to a designated path
            image_block.save(os.path.join('tmp_data', f'{img_hash}.png'))

            # preprocess image
            # print(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}')
            # subprocess.run(f'python scripts/process.py {os.path.join("tmp_data", f"{img_hash}.png")}', shell=True)
            preprocess(os.path.join("tmp_data", f"{img_hash}.png"))
        else:
            image_block.save(os.path.join('tmp_data', f'{img_hash}_rgba.png'))

    # stage 1
    # subprocess.run(f'python lgm/infer.py big --resume {ckpt_path} --test_path tmp_data/{img_hash}_rgba.png', shell=True)
    process_lgm(opt, f'tmp_data/{img_hash}_rgba.png', pipe_mvdream, model, rays_embeddings, seed_slider)
    # return [os.path.join('logs', 'tmp_rgba_model.ply')]
    return os.path.join('vis_data', f'{img_hash}_rgba_static.mp4')

@spaces.GPU(duration=120)
def optimize_stage_2(image_block: Image.Image, seed_slider: int):
    img_hash = hashlib.sha256(image_block.tobytes()).hexdigest()

    # stage 2
    # subprocess.run(f'python main_4d.py --config {os.path.join("configs", "4d_demo.yaml")} input={os.path.join("tmp_data", f"{img_hash}_rgba.png")}', shell=True)
    process_dg4d(os.path.join("configs", "4d_demo.yaml"), os.path.join("tmp_data", f"{img_hash}_rgba.png"), guidance_zero123)
    # os.rename(os.path.join('logs', f'{img_hash}_rgba_frames'), os.path.join('logs', f'{img_hash}_{seed_slider:03d}_rgba_frames'))
    image_dir = os.path.join('logs', f'{img_hash}_rgba_frames')
    return os.path.join('vis_data', f'{img_hash}_rgba.mp4'), [image_dir+f'/{t:03d}.ply' for t in range(28)]
    # return [image_dir+f'/{t:03d}.ply' for t in range(28)]


if __name__ == "__main__":
    _TITLE = '''DreamGaussian4D: Generative 4D Gaussian Splatting'''

    _DESCRIPTION = '''
    <div>
    <a style="display:inline-block" href="https://jiawei-ren.github.io/projects/dreamgaussian4d/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
    <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2312.17142"><img src="https://img.shields.io/badge/2312.17142-f9f7f7?logo="></a>
    <a style="display:inline-block; margin-left: .5em" href='https://github.com/jiawei-ren/dreamgaussian4d'><img src='https://img.shields.io/github/stars/jiawei-ren/dreamgaussian4d?style=social'/></a>
    </div>
    We present DreamGausssion4D, an efficient 4D generation framework that builds on Gaussian Splatting. 
    '''
    _IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above), click **Generate Video** and **Generate 3D**. Finally, click **Generate 4D**."

    # load images in 'data' folder as examples
    example_folder = os.path.join(os.path.dirname(__file__), 'data')
    example_fns = os.listdir(example_folder)
    example_fns.sort()
    examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')]

    # Compose demo layout & data flow
    with gr.Blocks(title=_TITLE, theme=gr.themes.Soft(), js=js_func) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)

        # Image-to-3D
        with gr.Row(variant='panel'):
            with gr.Column(scale=5):
                image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image')

                # elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle')
                seed_slider = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (Video)')
                seed_slider2 = gr.Slider(0, 100000, value=0, step=1, label='Random Seed (3D)')
                gr.Markdown(
                    "random seed for video generation.")

                preprocess_chk = gr.Checkbox(True,
                                             label='Preprocess image automatically (remove background and recenter object)')

                gr.Examples(
                    examples=examples_full,  # NOTE: elements must match inputs list!
                    inputs=[image_block],
                    outputs=[image_block],
                    cache_examples=False,
                    label='Examples (click one of the images below to start)',
                    examples_per_page=40
                )
                img_run_btn = gr.Button("Generate Video")
                threed_run_btn = gr.Button("Generate 3D")
                fourd_run_btn = gr.Button("Generate 4D")
                img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True)

            with gr.Column(scale=5):
                with gr.Row():
                    with gr.Column(scale=5):
                        dirving_video = gr.Video(label="video",height=290)
                    with gr.Column(scale=5):
                        obj3d = gr.Video(label="3D Model",height=290)
                video4d =  gr.Video(label="4D video",height=290)
                obj4d = Model4DGS(label="4D Model", height=500, fps=28)

            
            img_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_0,
                                                                                          inputs=[image_block,
                                                                                                  preprocess_chk,
                                                                                                  seed_slider],
                                                                                          outputs=[
                                                                                              dirving_video])

            threed_run_btn.click(check_img_input, inputs=[image_block], queue=False).success(optimize_stage_1,
                                                                                          inputs=[image_block,
                                                                                                  preprocess_chk,
                                                                                                  seed_slider2],
                                                                                          outputs=[
                                                                                              obj3d])
            fourd_run_btn.click(check_video_3d_input, inputs=[image_block], queue=False).success(optimize_stage_2, inputs=[image_block, seed_slider], outputs=[video4d, obj4d])

    # demo.queue().launch(share=True)
    demo.queue(max_size=10)  # <-- Sets up a queue with default parameters
    demo.launch()