File size: 9,054 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import functools
import math
import os
import time
from tkinter import W

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.cpp_extension import load
import torch.nn.init as init
from scene.hexplane import HexPlaneField


class Linear_Res(nn.Module):
    def __init__(self, W):
        super(Linear_Res, self).__init__()
        self.main_stream = nn.Linear(W, W)

    def forward(self, x):
        x = F.relu(x)
        return x + self.main_stream(x)


class Head_Res_Net(nn.Module):
    def __init__(self, W, H):
        super(Head_Res_Net, self).__init__()
        self.W = W
        self.H = H

        self.feature_out = [Linear_Res(self.W)]
        self.feature_out.append(nn.Linear(W, self.H))
        self.feature_out = nn.Sequential(*self.feature_out)
    
    def initialize_weights(self,):
        for m in self.feature_out.modules():
            if isinstance(m, nn.Linear):
                init.constant_(m.weight, 0)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        return self.feature_out(x)



class Deformation(nn.Module):
    def __init__(self, D=8, W=256, input_ch=27, input_ch_time=9, skips=[], args=None, use_res=False):
        super(Deformation, self).__init__()
        self.D = D
        self.W = W
        self.input_ch = input_ch
        self.input_ch_time = input_ch_time
        self.skips = skips

        self.no_grid = args.no_grid
        self.grid = HexPlaneField(args.bounds, args.kplanes_config, args.multires)

        self.use_res = use_res
        if not self.use_res:
            self.pos_deform, self.scales_deform, self.rotations_deform, self.opacity_deform = self.create_net()
        else:
            self.pos_deform, self.scales_deform, self.rotations_deform, self.opacity_deform = self.create_res_net()
        self.args = args
    
    def create_net(self):
        
        mlp_out_dim = 0
        if self.no_grid:
            self.feature_out = [nn.Linear(4,self.W)]
        else:
            self.feature_out = [nn.Linear(mlp_out_dim + self.grid.feat_dim ,self.W)]
        
        for i in range(self.D-1):
            self.feature_out.append(nn.ReLU())
            self.feature_out.append(nn.Linear(self.W,self.W))
        self.feature_out = nn.Sequential(*self.feature_out)
        output_dim = self.W
        return  \
            nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 3)),\
            nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 3)),\
            nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 4)), \
            nn.Sequential(nn.ReLU(),nn.Linear(self.W,self.W),nn.ReLU(),nn.Linear(self.W, 1))
    
    def create_res_net(self,):
        
        mlp_out_dim = 0

        if self.no_grid:
            self.feature_out = [nn.Linear(4,self.W)]
        else:
            self.feature_out = [nn.Linear(mlp_out_dim + self.grid.feat_dim ,self.W)]
        
        for i in range(self.D-1):
            self.feature_out.append(nn.ReLU())
            self.feature_out.append(nn.Linear(self.W,self.W))
        self.feature_out = nn.Sequential(*self.feature_out)

        output_dim = self.W
        return  \
            Head_Res_Net(self.W, 3), \
            Head_Res_Net(self.W, 3), \
            Head_Res_Net(self.W, 4), \
            Head_Res_Net(self.W, 1) 

    
    def query_time(self, rays_pts_emb, scales_emb, rotations_emb, time_emb):
        if self.args.no_mlp:
            assert not self.no_grid
            grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])
            h = grid_feature
        elif not self.use_res:
            if self.no_grid:
                h = torch.cat([rays_pts_emb[:,:3],time_emb[:,:1]],-1)
            else:
                grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])

                h = grid_feature
            
            h = self.feature_out(h)
        else:
            if self.no_grid:
                h = torch.cat([rays_pts_emb[:,:3],time_emb[:,:1]],-1)
                h = self.feature_out(h)
            else:
                grid_feature = self.grid(rays_pts_emb[:,:3], time_emb[:,:1])
                h = self.feature_out(grid_feature)
        return h

    def forward(self, rays_pts_emb, scales_emb=None, rotations_emb=None, opacity = None, time_emb=None):
        if time_emb is None:
            return self.forward_static(rays_pts_emb[:,:3])
        else:
            return self.forward_dynamic(rays_pts_emb, scales_emb, rotations_emb, opacity, time_emb)

    def forward_static(self, rays_pts_emb):
        grid_feature = self.grid(rays_pts_emb[:,:3])
        dx = self.static_mlp(grid_feature)
        return rays_pts_emb[:, :3] + dx

    def forward_dynamic(self,rays_pts_emb, scales_emb, rotations_emb, opacity_emb, time_emb):
        hidden = self.query_time(rays_pts_emb, scales_emb, rotations_emb, time_emb).float()
        if self.args.no_mlp:
            return hidden[:, :3], hidden[:, 3:6], hidden[:, 6:10], hidden[:, 10:11]
        dx = self.pos_deform(hidden)
        pts = dx
        if self.args.no_ds:
            scales = scales_emb[:,:3]
        else:
            ds = self.scales_deform(hidden)
            scales = ds
        if self.args.no_dr:
            rotations = rotations_emb[:,:4]
        else:
            dr = self.rotations_deform(hidden)
            rotations = dr
        if self.args.no_do:
            opacity = opacity_emb[:,:1] 
        else:
            do = self.opacity_deform(hidden) 
            opacity = do

        return pts, scales, rotations, opacity
    def get_mlp_parameters(self):
        parameter_list = []
        for name, param in self.named_parameters():
            if  "grid" not in name:
                parameter_list.append(param)
        return parameter_list
    def get_grid_parameters(self):
        return list(self.grid.parameters() ) 


class deform_network(nn.Module):
    def __init__(self, args) :
        super(deform_network, self).__init__()
        net_width = args.net_width
        timebase_pe = args.timebase_pe
        defor_depth= args.defor_depth
        posbase_pe= args.posebase_pe
        scale_rotation_pe = args.scale_rotation_pe
        opacity_pe = args.opacity_pe
        timenet_width = args.timenet_width
        timenet_output = args.timenet_output
        times_ch = 2*timebase_pe+1
        self.timenet = nn.Sequential(
        nn.Linear(times_ch, timenet_width), nn.ReLU(),
        nn.Linear(timenet_width, timenet_output))
        
        self.use_res = args.use_res
        if self.use_res:
            print("Using zero-init and residual")
        self.deformation_net = Deformation(W=net_width, D=defor_depth, input_ch=(4+3)+((4+3)*scale_rotation_pe)*2, input_ch_time=timenet_output, args=args, use_res=self.use_res)
        self.register_buffer('time_poc', torch.FloatTensor([(2**i) for i in range(timebase_pe)]))
        self.register_buffer('pos_poc', torch.FloatTensor([(2**i) for i in range(posbase_pe)]))
        self.register_buffer('rotation_scaling_poc', torch.FloatTensor([(2**i) for i in range(scale_rotation_pe)]))
        self.register_buffer('opacity_poc', torch.FloatTensor([(2**i) for i in range(opacity_pe)]))
        self.apply(initialize_weights)

        if self.use_res:
            self.deformation_net.pos_deform.initialize_weights()
            self.deformation_net.scales_deform.initialize_weights()
            self.deformation_net.rotations_deform.initialize_weights()
            self.deformation_net.opacity_deform.initialize_weights()


    def forward(self, point, scales=None, rotations=None, opacity=None, times_sel=None):
        if times_sel is not None:
            return self.forward_dynamic(point, scales, rotations, opacity, times_sel)
        else:
            return self.forward_static(point)

        
    def forward_static(self, points):
        points = self.deformation_net(points)
        return points
    def forward_dynamic(self, point, scales=None, rotations=None, opacity=None, times_sel=None):
        means3D, scales, rotations, opacity = self.deformation_net( point,
                                                  scales,
                                                rotations,
                                                opacity,
                                                times_sel)
        return means3D, scales, rotations, opacity
    def get_mlp_parameters(self):
        return self.deformation_net.get_mlp_parameters() + list(self.timenet.parameters())
    def get_grid_parameters(self):
        return self.deformation_net.get_grid_parameters()


def initialize_weights(m):
    if isinstance(m, nn.Linear):
        init.xavier_uniform_(m.weight,gain=1)
        if m.bias is not None:
            init.xavier_uniform_(m.weight,gain=1)

def initialize_zeros_weights(m):
    if isinstance(m, nn.Linear):
        init.constant_(m.weight, 0)
        if m.bias is not None:
            init.constant_(m.bias, 0)