Spaces:
Runtime error
Runtime error
File size: 14,258 Bytes
21c4e64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import copy
import json
import math
import os
import pathlib
from typing import Any, Callable, List, Optional, Text, Tuple, Union
import numpy as np
import scipy.signal
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
PRNGKey = Any
Shape = Tuple[int]
Dtype = Any # this could be a real type?
Array = Any
Activation = Callable[[Array], Array]
Initializer = Callable[[PRNGKey, Shape, Dtype], Array]
Normalizer = Callable[[], Callable[[Array], Array]]
PathType = Union[Text, pathlib.PurePosixPath]
from pathlib import PurePosixPath as GPath
def _compute_residual_and_jacobian(
x: np.ndarray,
y: np.ndarray,
xd: np.ndarray,
yd: np.ndarray,
k1: float = 0.0,
k2: float = 0.0,
k3: float = 0.0,
p1: float = 0.0,
p2: float = 0.0,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray,
np.ndarray]:
"""Auxiliary function of radial_and_tangential_undistort()."""
r = x * x + y * y
d = 1.0 + r * (k1 + r * (k2 + k3 * r))
fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd
# Compute derivative of d over [x, y]
d_r = (k1 + r * (2.0 * k2 + 3.0 * k3 * r))
d_x = 2.0 * x * d_r
d_y = 2.0 * y * d_r
# Compute derivative of fx over x and y.
fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y
# Compute derivative of fy over x and y.
fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y
return fx, fy, fx_x, fx_y, fy_x, fy_y
def _radial_and_tangential_undistort(
xd: np.ndarray,
yd: np.ndarray,
k1: float = 0,
k2: float = 0,
k3: float = 0,
p1: float = 0,
p2: float = 0,
eps: float = 1e-9,
max_iterations=10) -> Tuple[np.ndarray, np.ndarray]:
"""Computes undistorted (x, y) from (xd, yd)."""
# Initialize from the distorted point.
x = xd.copy()
y = yd.copy()
for _ in range(max_iterations):
fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
x=x, y=y, xd=xd, yd=yd, k1=k1, k2=k2, k3=k3, p1=p1, p2=p2)
denominator = fy_x * fx_y - fx_x * fy_y
x_numerator = fx * fy_y - fy * fx_y
y_numerator = fy * fx_x - fx * fy_x
step_x = np.where(
np.abs(denominator) > eps, x_numerator / denominator,
np.zeros_like(denominator))
step_y = np.where(
np.abs(denominator) > eps, y_numerator / denominator,
np.zeros_like(denominator))
x = x + step_x
y = y + step_y
return x, y
class Camera:
"""Class to handle camera geometry."""
def __init__(self,
orientation: np.ndarray,
position: np.ndarray,
focal_length: Union[np.ndarray, float],
principal_point: np.ndarray,
image_size: np.ndarray,
skew: Union[np.ndarray, float] = 0.0,
pixel_aspect_ratio: Union[np.ndarray, float] = 1.0,
radial_distortion: Optional[np.ndarray] = None,
tangential_distortion: Optional[np.ndarray] = None,
dtype=np.float32):
"""Constructor for camera class."""
if radial_distortion is None:
radial_distortion = np.array([0.0, 0.0, 0.0], dtype)
if tangential_distortion is None:
tangential_distortion = np.array([0.0, 0.0], dtype)
self.orientation = np.array(orientation, dtype)
self.position = np.array(position, dtype)
self.focal_length = np.array(focal_length, dtype)
self.principal_point = np.array(principal_point, dtype)
self.skew = np.array(skew, dtype)
self.pixel_aspect_ratio = np.array(pixel_aspect_ratio, dtype)
self.radial_distortion = np.array(radial_distortion, dtype)
self.tangential_distortion = np.array(tangential_distortion, dtype)
self.image_size = np.array(image_size, np.uint32)
self.dtype = dtype
@classmethod
def from_json(cls, path: PathType):
"""Loads a JSON camera into memory."""
path = GPath(path)
# with path.open('r') as fp:
with open(path, 'r') as fp:
camera_json = json.load(fp)
# Fix old camera JSON.
if 'tangential' in camera_json:
camera_json['tangential_distortion'] = camera_json['tangential']
return cls(
orientation=np.asarray(camera_json['orientation']),
position=np.asarray(camera_json['position']),
focal_length=camera_json['focal_length'],
principal_point=np.asarray(camera_json['principal_point']),
skew=camera_json['skew'],
pixel_aspect_ratio=camera_json['pixel_aspect_ratio'],
radial_distortion=np.asarray(camera_json['radial_distortion']),
tangential_distortion=np.asarray(camera_json['tangential_distortion']),
image_size=np.asarray(camera_json['image_size']),
)
def to_json(self):
return {
k: (v.tolist() if hasattr(v, 'tolist') else v)
for k, v in self.get_parameters().items()
}
def get_parameters(self):
return {
'orientation': self.orientation,
'position': self.position,
'focal_length': self.focal_length,
'principal_point': self.principal_point,
'skew': self.skew,
'pixel_aspect_ratio': self.pixel_aspect_ratio,
'radial_distortion': self.radial_distortion,
'tangential_distortion': self.tangential_distortion,
'image_size': self.image_size,
}
@property
def scale_factor_x(self):
return self.focal_length
@property
def scale_factor_y(self):
return self.focal_length * self.pixel_aspect_ratio
@property
def principal_point_x(self):
return self.principal_point[0]
@property
def principal_point_y(self):
return self.principal_point[1]
@property
def has_tangential_distortion(self):
return any(self.tangential_distortion != 0.0)
@property
def has_radial_distortion(self):
return any(self.radial_distortion != 0.0)
@property
def image_size_y(self):
return self.image_size[1]
@property
def image_size_x(self):
return self.image_size[0]
@property
def image_shape(self):
return self.image_size_y, self.image_size_x
@property
def optical_axis(self):
return self.orientation[2, :]
@property
def translation(self):
return -np.matmul(self.orientation, self.position)
def pixel_to_local_rays(self, pixels: np.ndarray):
"""Returns the local ray directions for the provided pixels."""
y = ((pixels[..., 1] - self.principal_point_y) / self.scale_factor_y)
x = ((pixels[..., 0] - self.principal_point_x - y * self.skew) /
self.scale_factor_x)
if self.has_radial_distortion or self.has_tangential_distortion:
x, y = _radial_and_tangential_undistort(
x,
y,
k1=self.radial_distortion[0],
k2=self.radial_distortion[1],
k3=self.radial_distortion[2],
p1=self.tangential_distortion[0],
p2=self.tangential_distortion[1])
dirs = np.stack([x, y, np.ones_like(x)], axis=-1)
return dirs / np.linalg.norm(dirs, axis=-1, keepdims=True)
def pixels_to_rays(self, pixels: np.ndarray) -> np.ndarray:
"""Returns the rays for the provided pixels.
Args:
pixels: [A1, ..., An, 2] tensor or np.array containing 2d pixel positions.
Returns:
An array containing the normalized ray directions in world coordinates.
"""
if pixels.shape[-1] != 2:
raise ValueError('The last dimension of pixels must be 2.')
if pixels.dtype != self.dtype:
raise ValueError(f'pixels dtype ({pixels.dtype!r}) must match camera '
f'dtype ({self.dtype!r})')
batch_shape = pixels.shape[:-1]
pixels = np.reshape(pixels, (-1, 2))
local_rays_dir = self.pixel_to_local_rays(pixels)
rays_dir = np.matmul(self.orientation.T, local_rays_dir[..., np.newaxis])
rays_dir = np.squeeze(rays_dir, axis=-1)
# Normalize rays.
rays_dir /= np.linalg.norm(rays_dir, axis=-1, keepdims=True)
rays_dir = rays_dir.reshape((*batch_shape, 3))
return rays_dir
def pixels_to_points(self, pixels: np.ndarray, depth: np.ndarray):
rays_through_pixels = self.pixels_to_rays(pixels)
cosa = np.matmul(rays_through_pixels, self.optical_axis)
points = (
rays_through_pixels * depth[..., np.newaxis] / cosa[..., np.newaxis] +
self.position)
return points
def points_to_local_points(self, points: np.ndarray):
translated_points = points - self.position
local_points = (np.matmul(self.orientation, translated_points.T)).T
return local_points
def project(self, points: np.ndarray):
"""Projects a 3D point (x,y,z) to a pixel position (x,y)."""
batch_shape = points.shape[:-1]
points = points.reshape((-1, 3))
local_points = self.points_to_local_points(points)
# Get normalized local pixel positions.
x = local_points[..., 0] / local_points[..., 2]
y = local_points[..., 1] / local_points[..., 2]
r2 = x**2 + y**2
# Apply radial distortion.
distortion = 1.0 + r2 * (
self.radial_distortion[0] + r2 *
(self.radial_distortion[1] + self.radial_distortion[2] * r2))
# Apply tangential distortion.
x_times_y = x * y
x = (
x * distortion + 2.0 * self.tangential_distortion[0] * x_times_y +
self.tangential_distortion[1] * (r2 + 2.0 * x**2))
y = (
y * distortion + 2.0 * self.tangential_distortion[1] * x_times_y +
self.tangential_distortion[0] * (r2 + 2.0 * y**2))
# Map the distorted ray to the image plane and return the depth.
pixel_x = self.focal_length * x + self.skew * y + self.principal_point_x
pixel_y = (self.focal_length * self.pixel_aspect_ratio * y
+ self.principal_point_y)
pixels = np.stack([pixel_x, pixel_y], axis=-1)
return pixels.reshape((*batch_shape, 2))
def get_pixel_centers(self):
"""Returns the pixel centers."""
xx, yy = np.meshgrid(np.arange(self.image_size_x, dtype=self.dtype),
np.arange(self.image_size_y, dtype=self.dtype))
return np.stack([xx, yy], axis=-1) + 0.5
def scale(self, scale: float):
"""Scales the camera."""
if scale <= 0:
raise ValueError('scale needs to be positive.')
new_camera = Camera(
orientation=self.orientation.copy(),
position=self.position.copy(),
focal_length=self.focal_length * scale,
principal_point=self.principal_point.copy() * scale,
skew=self.skew,
pixel_aspect_ratio=self.pixel_aspect_ratio,
radial_distortion=self.radial_distortion.copy(),
tangential_distortion=self.tangential_distortion.copy(),
image_size=np.array((int(round(self.image_size[0] * scale)),
int(round(self.image_size[1] * scale)))),
)
return new_camera
def look_at(self, position, look_at, up, eps=1e-6):
"""Creates a copy of the camera which looks at a given point.
Copies the provided vision_sfm camera and returns a new camera that is
positioned at `camera_position` while looking at `look_at_position`.
Camera intrinsics are copied by this method. A common value for the
up_vector is (0, 1, 0).
Args:
position: A (3,) numpy array representing the position of the camera.
look_at: A (3,) numpy array representing the location the camera
looks at.
up: A (3,) numpy array representing the up direction, whose
projection is parallel to the y-axis of the image plane.
eps: a small number to prevent divides by zero.
Returns:
A new camera that is copied from the original but is positioned and
looks at the provided coordinates.
Raises:
ValueError: If the camera position and look at position are very close
to each other or if the up-vector is parallel to the requested optical
axis.
"""
look_at_camera = self.copy()
optical_axis = look_at - position
norm = np.linalg.norm(optical_axis)
if norm < eps:
raise ValueError('The camera center and look at position are too close.')
optical_axis /= norm
right_vector = np.cross(optical_axis, up)
norm = np.linalg.norm(right_vector)
if norm < eps:
raise ValueError('The up-vector is parallel to the optical axis.')
right_vector /= norm
# The three directions here are orthogonal to each other and form a right
# handed coordinate system.
camera_rotation = np.identity(3)
camera_rotation[0, :] = right_vector
camera_rotation[1, :] = np.cross(optical_axis, right_vector)
camera_rotation[2, :] = optical_axis
look_at_camera.position = position
look_at_camera.orientation = camera_rotation
return look_at_camera
def crop_image_domain(
self, left: int = 0, right: int = 0, top: int = 0, bottom: int = 0):
"""Returns a copy of the camera with adjusted image bounds.
Args:
left: number of pixels by which to reduce (or augment, if negative) the
image domain at the associated boundary.
right: likewise.
top: likewise.
bottom: likewise.
The crop parameters may not cause the camera image domain dimensions to
become non-positive.
Returns:
A camera with adjusted image dimensions. The focal length is unchanged,
and the principal point is updated to preserve the original principal
axis.
"""
crop_left_top = np.array([left, top])
crop_right_bottom = np.array([right, bottom])
new_resolution = self.image_size - crop_left_top - crop_right_bottom
new_principal_point = self.principal_point - crop_left_top
if np.any(new_resolution <= 0):
raise ValueError('Crop would result in non-positive image dimensions.')
new_camera = self.copy()
new_camera.image_size = np.array([int(new_resolution[0]),
int(new_resolution[1])])
new_camera.principal_point = np.array([new_principal_point[0],
new_principal_point[1]])
return new_camera
def copy(self):
return copy.deepcopy(self)
''' Misc
'''
mse2psnr = lambda x : -10. * torch.log10(x)
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
''' Checkpoint utils
''' |