File size: 14,258 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import copy
import json
import math
import os
import pathlib
from typing import Any, Callable, List, Optional, Text, Tuple, Union

import numpy as np
import scipy.signal
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor


PRNGKey = Any
Shape = Tuple[int]
Dtype = Any  # this could be a real type?
Array = Any
Activation = Callable[[Array], Array]
Initializer = Callable[[PRNGKey, Shape, Dtype], Array]
Normalizer = Callable[[], Callable[[Array], Array]]
PathType = Union[Text, pathlib.PurePosixPath]

from pathlib import PurePosixPath as GPath


def _compute_residual_and_jacobian(
    x: np.ndarray,
    y: np.ndarray,
    xd: np.ndarray,
    yd: np.ndarray,
    k1: float = 0.0,
    k2: float = 0.0,
    k3: float = 0.0,
    p1: float = 0.0,
    p2: float = 0.0,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray,
           np.ndarray]:
  """Auxiliary function of radial_and_tangential_undistort()."""

  r = x * x + y * y
  d = 1.0 + r * (k1 + r * (k2 + k3 * r))

  fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
  fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd

  # Compute derivative of d over [x, y]
  d_r = (k1 + r * (2.0 * k2 + 3.0 * k3 * r))
  d_x = 2.0 * x * d_r
  d_y = 2.0 * y * d_r

  # Compute derivative of fx over x and y.
  fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
  fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y

  # Compute derivative of fy over x and y.
  fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
  fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y

  return fx, fy, fx_x, fx_y, fy_x, fy_y


def _radial_and_tangential_undistort(
    xd: np.ndarray,
    yd: np.ndarray,
    k1: float = 0,
    k2: float = 0,
    k3: float = 0,
    p1: float = 0,
    p2: float = 0,
    eps: float = 1e-9,
    max_iterations=10) -> Tuple[np.ndarray, np.ndarray]:
  """Computes undistorted (x, y) from (xd, yd)."""
  # Initialize from the distorted point.
  x = xd.copy()
  y = yd.copy()

  for _ in range(max_iterations):
    fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
        x=x, y=y, xd=xd, yd=yd, k1=k1, k2=k2, k3=k3, p1=p1, p2=p2)
    denominator = fy_x * fx_y - fx_x * fy_y
    x_numerator = fx * fy_y - fy * fx_y
    y_numerator = fy * fx_x - fx * fy_x
    step_x = np.where(
        np.abs(denominator) > eps, x_numerator / denominator,
        np.zeros_like(denominator))
    step_y = np.where(
        np.abs(denominator) > eps, y_numerator / denominator,
        np.zeros_like(denominator))

    x = x + step_x
    y = y + step_y

  return x, y


class Camera:
  """Class to handle camera geometry."""

  def __init__(self,
               orientation: np.ndarray,
               position: np.ndarray,
               focal_length: Union[np.ndarray, float],
               principal_point: np.ndarray,
               image_size: np.ndarray,
               skew: Union[np.ndarray, float] = 0.0,
               pixel_aspect_ratio: Union[np.ndarray, float] = 1.0,
               radial_distortion: Optional[np.ndarray] = None,
               tangential_distortion: Optional[np.ndarray] = None,
               dtype=np.float32):
    """Constructor for camera class."""
    if radial_distortion is None:
      radial_distortion = np.array([0.0, 0.0, 0.0], dtype)
    if tangential_distortion is None:
      tangential_distortion = np.array([0.0, 0.0], dtype)

    self.orientation = np.array(orientation, dtype)
    self.position = np.array(position, dtype)
    self.focal_length = np.array(focal_length, dtype)
    self.principal_point = np.array(principal_point, dtype)
    self.skew = np.array(skew, dtype)
    self.pixel_aspect_ratio = np.array(pixel_aspect_ratio, dtype)
    self.radial_distortion = np.array(radial_distortion, dtype)
    self.tangential_distortion = np.array(tangential_distortion, dtype)
    self.image_size = np.array(image_size, np.uint32)
    self.dtype = dtype

  @classmethod
  def from_json(cls, path: PathType):
    """Loads a JSON camera into memory."""
    path = GPath(path)
    # with path.open('r') as fp:
    with open(path, 'r') as fp:
      camera_json = json.load(fp)

    # Fix old camera JSON.
    if 'tangential' in camera_json:
      camera_json['tangential_distortion'] = camera_json['tangential']

    return cls(
        orientation=np.asarray(camera_json['orientation']),
        position=np.asarray(camera_json['position']),
        focal_length=camera_json['focal_length'],
        principal_point=np.asarray(camera_json['principal_point']),
        skew=camera_json['skew'],
        pixel_aspect_ratio=camera_json['pixel_aspect_ratio'],
        radial_distortion=np.asarray(camera_json['radial_distortion']),
        tangential_distortion=np.asarray(camera_json['tangential_distortion']),
        image_size=np.asarray(camera_json['image_size']),
    )

  def to_json(self):
    return {
        k: (v.tolist() if hasattr(v, 'tolist') else v)
        for k, v in self.get_parameters().items()
    }

  def get_parameters(self):
    return {
        'orientation': self.orientation,
        'position': self.position,
        'focal_length': self.focal_length,
        'principal_point': self.principal_point,
        'skew': self.skew,
        'pixel_aspect_ratio': self.pixel_aspect_ratio,
        'radial_distortion': self.radial_distortion,
        'tangential_distortion': self.tangential_distortion,
        'image_size': self.image_size,
    }

  @property
  def scale_factor_x(self):
    return self.focal_length

  @property
  def scale_factor_y(self):
    return self.focal_length * self.pixel_aspect_ratio

  @property
  def principal_point_x(self):
    return self.principal_point[0]

  @property
  def principal_point_y(self):
    return self.principal_point[1]

  @property
  def has_tangential_distortion(self):
    return any(self.tangential_distortion != 0.0)

  @property
  def has_radial_distortion(self):
    return any(self.radial_distortion != 0.0)

  @property
  def image_size_y(self):
    return self.image_size[1]

  @property
  def image_size_x(self):
    return self.image_size[0]

  @property
  def image_shape(self):
    return self.image_size_y, self.image_size_x

  @property
  def optical_axis(self):
    return self.orientation[2, :]

  @property
  def translation(self):
    return -np.matmul(self.orientation, self.position)

  def pixel_to_local_rays(self, pixels: np.ndarray):
    """Returns the local ray directions for the provided pixels."""
    y = ((pixels[..., 1] - self.principal_point_y) / self.scale_factor_y)
    x = ((pixels[..., 0] - self.principal_point_x - y * self.skew) /
         self.scale_factor_x)

    if self.has_radial_distortion or self.has_tangential_distortion:
      x, y = _radial_and_tangential_undistort(
          x,
          y,
          k1=self.radial_distortion[0],
          k2=self.radial_distortion[1],
          k3=self.radial_distortion[2],
          p1=self.tangential_distortion[0],
          p2=self.tangential_distortion[1])

    dirs = np.stack([x, y, np.ones_like(x)], axis=-1)
    return dirs / np.linalg.norm(dirs, axis=-1, keepdims=True)

  def pixels_to_rays(self, pixels: np.ndarray) -> np.ndarray:
    """Returns the rays for the provided pixels.

    Args:
      pixels: [A1, ..., An, 2] tensor or np.array containing 2d pixel positions.

    Returns:
        An array containing the normalized ray directions in world coordinates.
    """
    if pixels.shape[-1] != 2:
      raise ValueError('The last dimension of pixels must be 2.')
    if pixels.dtype != self.dtype:
      raise ValueError(f'pixels dtype ({pixels.dtype!r}) must match camera '
                       f'dtype ({self.dtype!r})')

    batch_shape = pixels.shape[:-1]
    pixels = np.reshape(pixels, (-1, 2))

    local_rays_dir = self.pixel_to_local_rays(pixels)
    rays_dir = np.matmul(self.orientation.T, local_rays_dir[..., np.newaxis])
    rays_dir = np.squeeze(rays_dir, axis=-1)

    # Normalize rays.
    rays_dir /= np.linalg.norm(rays_dir, axis=-1, keepdims=True)
    rays_dir = rays_dir.reshape((*batch_shape, 3))
    return rays_dir

  def pixels_to_points(self, pixels: np.ndarray, depth: np.ndarray):
    rays_through_pixels = self.pixels_to_rays(pixels)
    cosa = np.matmul(rays_through_pixels, self.optical_axis)
    points = (
        rays_through_pixels * depth[..., np.newaxis] / cosa[..., np.newaxis] +
        self.position)
    return points

  def points_to_local_points(self, points: np.ndarray):
    translated_points = points - self.position
    local_points = (np.matmul(self.orientation, translated_points.T)).T
    return local_points

  def project(self, points: np.ndarray):
    """Projects a 3D point (x,y,z) to a pixel position (x,y)."""
    batch_shape = points.shape[:-1]
    points = points.reshape((-1, 3))
    local_points = self.points_to_local_points(points)

    # Get normalized local pixel positions.
    x = local_points[..., 0] / local_points[..., 2]
    y = local_points[..., 1] / local_points[..., 2]
    r2 = x**2 + y**2

    # Apply radial distortion.
    distortion = 1.0 + r2 * (
        self.radial_distortion[0] + r2 *
        (self.radial_distortion[1] + self.radial_distortion[2] * r2))

    # Apply tangential distortion.
    x_times_y = x * y
    x = (
        x * distortion + 2.0 * self.tangential_distortion[0] * x_times_y +
        self.tangential_distortion[1] * (r2 + 2.0 * x**2))
    y = (
        y * distortion + 2.0 * self.tangential_distortion[1] * x_times_y +
        self.tangential_distortion[0] * (r2 + 2.0 * y**2))

    # Map the distorted ray to the image plane and return the depth.
    pixel_x = self.focal_length * x + self.skew * y + self.principal_point_x
    pixel_y = (self.focal_length * self.pixel_aspect_ratio * y
               + self.principal_point_y)

    pixels = np.stack([pixel_x, pixel_y], axis=-1)
    return pixels.reshape((*batch_shape, 2))

  def get_pixel_centers(self):
    """Returns the pixel centers."""
    xx, yy = np.meshgrid(np.arange(self.image_size_x, dtype=self.dtype),
                         np.arange(self.image_size_y, dtype=self.dtype))
    return np.stack([xx, yy], axis=-1) + 0.5

  def scale(self, scale: float):
    """Scales the camera."""
    if scale <= 0:
      raise ValueError('scale needs to be positive.')

    new_camera = Camera(
        orientation=self.orientation.copy(),
        position=self.position.copy(),
        focal_length=self.focal_length * scale,
        principal_point=self.principal_point.copy() * scale,
        skew=self.skew,
        pixel_aspect_ratio=self.pixel_aspect_ratio,
        radial_distortion=self.radial_distortion.copy(),
        tangential_distortion=self.tangential_distortion.copy(),
        image_size=np.array((int(round(self.image_size[0] * scale)),
                             int(round(self.image_size[1] * scale)))),
    )
    return new_camera

  def look_at(self, position, look_at, up, eps=1e-6):
    """Creates a copy of the camera which looks at a given point.

    Copies the provided vision_sfm camera and returns a new camera that is
    positioned at `camera_position` while looking at `look_at_position`.
    Camera intrinsics are copied by this method. A common value for the
    up_vector is (0, 1, 0).

    Args:
      position: A (3,) numpy array representing the position of the camera.
      look_at: A (3,) numpy array representing the location the camera
        looks at.
      up: A (3,) numpy array representing the up direction, whose
        projection is parallel to the y-axis of the image plane.
      eps: a small number to prevent divides by zero.

    Returns:
      A new camera that is copied from the original but is positioned and
        looks at the provided coordinates.

    Raises:
      ValueError: If the camera position and look at position are very close
        to each other or if the up-vector is parallel to the requested optical
        axis.
    """

    look_at_camera = self.copy()
    optical_axis = look_at - position
    norm = np.linalg.norm(optical_axis)
    if norm < eps:
      raise ValueError('The camera center and look at position are too close.')
    optical_axis /= norm

    right_vector = np.cross(optical_axis, up)
    norm = np.linalg.norm(right_vector)
    if norm < eps:
      raise ValueError('The up-vector is parallel to the optical axis.')
    right_vector /= norm

    # The three directions here are orthogonal to each other and form a right
    # handed coordinate system.
    camera_rotation = np.identity(3)
    camera_rotation[0, :] = right_vector
    camera_rotation[1, :] = np.cross(optical_axis, right_vector)
    camera_rotation[2, :] = optical_axis

    look_at_camera.position = position
    look_at_camera.orientation = camera_rotation
    return look_at_camera

  def crop_image_domain(
      self, left: int = 0, right: int = 0, top: int = 0, bottom: int = 0):
    """Returns a copy of the camera with adjusted image bounds.

    Args:
      left: number of pixels by which to reduce (or augment, if negative) the
        image domain at the associated boundary.
      right: likewise.
      top: likewise.
      bottom: likewise.

    The crop parameters may not cause the camera image domain dimensions to
    become non-positive.

    Returns:
      A camera with adjusted image dimensions.  The focal length is unchanged,
      and the principal point is updated to preserve the original principal
      axis.
    """

    crop_left_top = np.array([left, top])
    crop_right_bottom = np.array([right, bottom])
    new_resolution = self.image_size - crop_left_top - crop_right_bottom
    new_principal_point = self.principal_point - crop_left_top
    if np.any(new_resolution <= 0):
      raise ValueError('Crop would result in non-positive image dimensions.')

    new_camera = self.copy()
    new_camera.image_size = np.array([int(new_resolution[0]),
                                      int(new_resolution[1])])
    new_camera.principal_point = np.array([new_principal_point[0],
                                           new_principal_point[1]])
    return new_camera

  def copy(self):
    return copy.deepcopy(self)


''' Misc
'''
mse2psnr = lambda x : -10. * torch.log10(x)
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)



''' Checkpoint utils
'''