File size: 6,414 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import itertools
import logging as log
from typing import Optional, Union, List, Dict, Sequence, Iterable, Collection, Callable

import torch
import torch.nn as nn
import torch.nn.functional as F


def get_normalized_directions(directions):
    """SH encoding must be in the range [0, 1]

    Args:
        directions: batch of directions
    """
    return (directions + 1.0) / 2.0


def normalize_aabb(pts, aabb):
    return (pts - aabb[0]) * (2.0 / (aabb[1] - aabb[0])) - 1.0
def grid_sample_wrapper(grid: torch.Tensor, coords: torch.Tensor, align_corners: bool = True) -> torch.Tensor:
    grid_dim = coords.shape[-1]

    if grid.dim() == grid_dim + 1:
        # no batch dimension present, need to add it
        grid = grid.unsqueeze(0)
    if coords.dim() == 2:
        coords = coords.unsqueeze(0)

    if grid_dim == 2 or grid_dim == 3:
        grid_sampler = F.grid_sample
    else:
        raise NotImplementedError(f"Grid-sample was called with {grid_dim}D data but is only "
                                  f"implemented for 2 and 3D data.")

    coords = coords.view([coords.shape[0]] + [1] * (grid_dim - 1) + list(coords.shape[1:]))
    B, feature_dim = grid.shape[:2]
    n = coords.shape[-2]
    interp = grid_sampler(
        grid,  # [B, feature_dim, reso, ...]
        coords,  # [B, 1, ..., n, grid_dim]
        align_corners=align_corners,
        mode='bilinear', padding_mode='border')
    interp = interp.view(B, feature_dim, n).transpose(-1, -2)  # [B, n, feature_dim]
    interp = interp.squeeze()  # [B?, n, feature_dim?]
    return interp

def init_grid_param(
        grid_nd: int,
        in_dim: int,
        out_dim: int,
        reso: Sequence[int],
        a: float = 0.1,
        b: float = 0.5):
    assert in_dim == len(reso), "Resolution must have same number of elements as input-dimension"
    has_time_planes = in_dim == 4
    assert grid_nd <= in_dim
    coo_combs = list(itertools.combinations(range(in_dim), grid_nd))
    grid_coefs = nn.ParameterList()
    for ci, coo_comb in enumerate(coo_combs):
        new_grid_coef = nn.Parameter(torch.empty(
            [1, out_dim] + [reso[cc] for cc in coo_comb[::-1]]
        ))
        if has_time_planes and 3 in coo_comb:  # Initialize time planes to 1
            nn.init.ones_(new_grid_coef)
        else:
            nn.init.uniform_(new_grid_coef, a=a, b=b)
        grid_coefs.append(new_grid_coef)

    return grid_coefs


def interpolate_ms_features(pts: torch.Tensor,
                            ms_grids: Collection[Iterable[nn.Module]],
                            grid_dimensions: int,
                            concat_features: bool,
                            num_levels: Optional[int],
                            ) -> torch.Tensor:
    coo_combs = list(itertools.combinations(
        range(pts.shape[-1]), grid_dimensions)
    )
    if num_levels is None:
        num_levels = len(ms_grids)
    multi_scale_interp = [] if concat_features else 0.
    grid: nn.ParameterList
    for scale_id,  grid in enumerate(ms_grids[:num_levels]):
        interp_space = 1.
        for ci, coo_comb in enumerate(coo_combs):
            # interpolate in plane
            feature_dim = grid[ci].shape[1]  # shape of grid[ci]: 1, out_dim, *reso
            interp_out_plane = (
                grid_sample_wrapper(grid[ci], pts[..., coo_comb])
                .view(-1, feature_dim)
            )
            # compute product over planes
            interp_space = interp_space * interp_out_plane

        # combine over scales
        if concat_features:
            multi_scale_interp.append(interp_space)
        else:
            multi_scale_interp = multi_scale_interp + interp_space

    if concat_features:
        multi_scale_interp = torch.cat(multi_scale_interp, dim=-1)
    return multi_scale_interp


class HexPlaneField(nn.Module):
    def __init__(
        self,
        
        bounds,
        planeconfig,
        multires
    ) -> None:
        super().__init__()
        aabb = torch.tensor([[bounds,bounds,bounds],
                             [-bounds,-bounds,-bounds]])
        self.aabb = nn.Parameter(aabb, requires_grad=False)
        self.grid_config =  [planeconfig]
        self.multiscale_res_multipliers = multires
        self.concat_features = True

        # 1. Init planes
        self.grids = nn.ModuleList()
        self.feat_dim = 0
        for res in self.multiscale_res_multipliers:
            # initialize coordinate grid
            config = self.grid_config[0].copy()
            # Resolution fix: multi-res only on spatial planes
            config["resolution"] = [
                r * res for r in config["resolution"][:3]
            ] + config["resolution"][3:]
            gp = init_grid_param(
                grid_nd=config["grid_dimensions"],
                in_dim=config["input_coordinate_dim"],
                out_dim=config["output_coordinate_dim"],
                reso=config["resolution"],
            )
            # shape[1] is out-dim - Concatenate over feature len for each scale
            if self.concat_features:
                self.feat_dim += gp[-1].shape[1]
            else:
                self.feat_dim = gp[-1].shape[1]
            self.grids.append(gp)
        # print(f"Initialized model grids: {self.grids}")
        print("feature_dim:",self.feat_dim)


    def set_aabb(self,xyz_max, xyz_min):
        aabb = torch.tensor([
            xyz_max,
            xyz_min
        ])
        self.aabb = nn.Parameter(aabb,requires_grad=True)
        print("Voxel Plane: set aabb=",self.aabb)

    def get_density(self, pts: torch.Tensor, timestamps: Optional[torch.Tensor] = None):
        """Computes and returns the densities."""

        pts = normalize_aabb(pts, self.aabb)
        pts = torch.cat((pts, timestamps), dim=-1)  # [n_rays, n_samples, 4]

        pts = pts.reshape(-1, pts.shape[-1])
        features = interpolate_ms_features(
            pts, ms_grids=self.grids,  # noqa
            grid_dimensions=self.grid_config[0]["grid_dimensions"],
            concat_features=self.concat_features, num_levels=None)
        if len(features) < 1:
            features = torch.zeros((0, 1)).to(features.device)


        return features

    def forward(self,
                pts: torch.Tensor,
                timestamps: Optional[torch.Tensor] = None):

        features = self.get_density(pts, timestamps)

        return features