File size: 4,053 Bytes
21c4e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import sys
from datetime import datetime
import numpy as np
import random

def inverse_sigmoid(x):
    return torch.log(x/(1-x))

def PILtoTorch(pil_image, resolution):
    if resolution is not None:
        resized_image_PIL = pil_image.resize(resolution)
    else:
        resized_image_PIL = pil_image
    resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
    if len(resized_image.shape) == 3:
        return resized_image.permute(2, 0, 1)
    else:
        return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)

def get_expon_lr_func(
    lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
    """
    Copied from Plenoxels

    Continuous learning rate decay function. Adapted from JaxNeRF
    The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
    is log-linearly interpolated elsewhere (equivalent to exponential decay).
    If lr_delay_steps>0 then the learning rate will be scaled by some smooth
    function of lr_delay_mult, such that the initial learning rate is
    lr_init*lr_delay_mult at the beginning of optimization but will be eased back
    to the normal learning rate when steps>lr_delay_steps.
    :param conf: config subtree 'lr' or similar
    :param max_steps: int, the number of steps during optimization.
    :return HoF which takes step as input
    """

    def helper(step):
        if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
            # Disable this parameter
            return 0.0
        if lr_delay_steps > 0:
            # A kind of reverse cosine decay.
            delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
                0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
            )
        else:
            delay_rate = 1.0
        t = np.clip(step / max_steps, 0, 1)
        log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
        return delay_rate * log_lerp

    return helper

def strip_lowerdiag(L):
    uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")

    uncertainty[:, 0] = L[:, 0, 0]
    uncertainty[:, 1] = L[:, 0, 1]
    uncertainty[:, 2] = L[:, 0, 2]
    uncertainty[:, 3] = L[:, 1, 1]
    uncertainty[:, 4] = L[:, 1, 2]
    uncertainty[:, 5] = L[:, 2, 2]
    return uncertainty

def strip_symmetric(sym):
    return strip_lowerdiag(sym)

def build_rotation(r):
    norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device='cuda')

    w = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y*y + z*z)
    R[:, 0, 1] = 2 * (x*y - w*z)
    R[:, 0, 2] = 2 * (x*z + w*y)
    R[:, 1, 0] = 2 * (x*y + w*z)
    R[:, 1, 1] = 1 - 2 * (x*x + z*z)
    R[:, 1, 2] = 2 * (y*z - w*x)
    R[:, 2, 0] = 2 * (x*z - w*y)
    R[:, 2, 1] = 2 * (y*z + w*x)
    R[:, 2, 2] = 1 - 2 * (x*x + y*y)
    return R

def build_scaling_rotation(s, r):
    L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
    R = build_rotation(r)

    L[:,0,0] = s[:,0]
    L[:,1,1] = s[:,1]
    L[:,2,2] = s[:,2]

    L = R @ L
    return L

def safe_state(silent):
    old_f = sys.stdout
    class F:
        def __init__(self, silent):
            self.silent = silent

        def write(self, x):
            if not self.silent:
                if x.endswith("\n"):
                    old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
                else:
                    old_f.write(x)

        def flush(self):
            old_f.flush()

    sys.stdout = F(silent)

    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.set_device(torch.device("cuda:0"))