jiawenchim's picture
Update app.py
70a42a9
raw
history blame
4.83 kB
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2
PATH_TO_LABELS = 'data/label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
def pil_image_as_numpy_array(pilimg):
img_array = tf.keras.utils.img_to_array(pilimg)
img_array = np.expand_dims(img_array, axis=0)
return img_array
def load_image_into_numpy_array(path):
image = None
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
return pil_image_as_numpy_array(image)
def load_model():
download_dir = snapshot_download(REPO_ID)
saved_model_dir = os.path.join(download_dir, "saved_model")
detection_model = tf.saved_model.load(saved_model_dir)
return detection_model
# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
#
def predict(pilimg):
image_np = pil_image_as_numpy_array(pilimg)
return predict2(image_np)
def predict2(image_np):
results = detection_model(image_np)
# different object detection models have additional results
result = {key:value.numpy() for key,value in results.items()}
label_id_offset = 0
image_np_with_detections = image_np.copy()
viz_utils.visualize_boxes_and_labels_on_image_array(
image_np_with_detections[0],
result['detection_boxes'][0],
(result['detection_classes'][0] + label_id_offset).astype(int),
result['detection_scores'][0],
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.60,
agnostic_mode=False,
line_thickness=2)
result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
return result_pil_img
def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
video_reader = cv2.VideoCapture(video_in_filepath)
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = video_reader.get(cv2.CAP_PROP_FPS)
video_writer = cv2.VideoWriter(
video_out_filepath,
cv2.VideoWriter_fourcc(*'mp4v'),
fps,
(frame_w, frame_h)
)
while True:
ret, frame = video_reader.read()
if not ret:
break # Break the loop if the video is finished
processed_frame = predict(frame)
processed_frame_np = np.array(processed_frame)
video_writer.write(processed_frame_np)
# Release camera and close windows
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
video_reader.release()
video_writer.release()
cv2.destroyAllWindows()
cv2.waitKey(1)
# Function to process a video
def process_video(video_path):
output_path = "output_video.mp4" # Output path for the processed video
predict_on_video(video_path, output_path, detection_model, category_index)
return output_path
# Specify paths to example images
sample_images = [["00000031.jpg"], ["00000053.jpg"],
["00000057.jpg"], ["00000078.jpg"],
["00000854.jpg"], ["00000995.jpg"],
["00001052.jpg"],["00001444.jpg"],["00001452.jpg"]
]
REPO_ID = "jiawenchim/iti107model"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
# predicted_img = predict(image_arr)
# predicted_img.save('predicted.jpg')
tab1 = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
examples=sample_images,
title="Image - Object Detection (Battery and Dice)",
description='Model used: SSD MobileNet V1 FPN 640x640.'
)
tab2 = gr.Interface(
fn=process_video,
inputs=gr.File(label="Upload a video"),
outputs=gr.File(label="output"),
title='Video - Object Detection (Battery and Dice)',
examples=[["Three Dice Trick.mp4"],["Look at the fork and battery-in power.mp4"]],
description='Model used: SSD MobileNet V1 FPN 640x640. For video processing interface, I would like to endorse student 23B712M for his works.'
)
iface = gr.TabbedInterface([tab1, tab2], tab_names = ['Image','Video'], title='Battery and Dice detection')
iface.launch(share=True)