Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import numpy as np | |
import wikipediaapi as wk | |
import wikipedia | |
from transformers import ( | |
TokenClassificationPipeline, | |
AutoModelForTokenClassification, | |
AutoTokenizer, | |
BertForQuestionAnswering, | |
BertTokenizer | |
) | |
from transformers.pipelines import AggregationStrategy | |
import torch | |
# =====[ DEFINE PIPELINE ]===== # | |
class KeyphraseExtractionPipeline(TokenClassificationPipeline): | |
def __init__(self, model, *args, **kwargs): | |
super().__init__( | |
model=AutoModelForTokenClassification.from_pretrained(model), | |
tokenizer=AutoTokenizer.from_pretrained(model), | |
*args, | |
**kwargs | |
) | |
def postprocess(self, model_outputs): | |
results = super().postprocess( | |
model_outputs=model_outputs, | |
aggregation_strategy=AggregationStrategy.SIMPLE, | |
) | |
return np.unique([result.get("word").strip() for result in results]) | |
# =====[ LOAD PIPELINE ]===== # | |
keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec" | |
extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel) | |
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') | |
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad') | |
#TODO: add further preprocessing | |
def keyphrases_extraction(text: str) -> str: | |
keyphrases = extractor(text) | |
return keyphrases | |
def wikipedia_search(input: str) -> str: | |
input = input.replace("\n", " ") | |
keyphrases = keyphrases_extraction(input) | |
wiki = wk.Wikipedia('en') | |
try : | |
if len(keyphrases) == 0: | |
return "Can you add more details to your question?" | |
query_suggestion = wikipedia.suggest(keyphrases[0]) | |
if(query_suggestion != None): | |
results = wikipedia.search(query_suggestion) | |
else: | |
results = wikipedia.search(keyphrases[0]) | |
index = 0 | |
page = wiki.page(results[index]) | |
while not ('.' in page.summary) or not page.exists(): | |
index += 1 | |
if index == len(results): | |
raise Exception | |
page = wiki.page(results[index]) | |
return page.summary | |
except: | |
return "I cannot answer this question" | |
def answer_question(question): | |
context = wikipedia_search(question) | |
if (context == "I cannot answer this question") or (context == "Can you add more details to your question?"): | |
return context | |
# ======== Tokenize ======== | |
# Apply the tokenizer to the input text, treating them as a text-pair. | |
input_ids = tokenizer.encode(question, context) | |
question_ids = input_ids[:input_ids.index(tokenizer.sep_token_id)+1] | |
# Report how long the input sequence is. if longer than 512 tokens divide it multiple sequences | |
length_of_group = 512 - len(question_ids) | |
input_ids_without_question = input_ids[input_ids.index(tokenizer.sep_token_id)+1:] | |
print(f"Query has {len(input_ids)} tokens, divided in {len(input_ids_without_question)//length_of_group + 1}.\n") | |
input_ids_split = [] | |
for group in range(len(input_ids_without_question)//length_of_group + 1): | |
input_ids_split.append(question_ids + input_ids_without_question[length_of_group*group:length_of_group*(group+1)-1]) | |
input_ids_split.append(question_ids + input_ids_without_question[length_of_group*(len(input_ids_without_question)//length_of_group + 1):len(input_ids_without_question)-1]) | |
scores = [] | |
for input in input_ids_split: | |
# ======== Set Segment IDs ======== | |
# Search the input_ids for the first instance of the `[SEP]` token. | |
sep_index = input.index(tokenizer.sep_token_id) | |
# The number of segment A tokens includes the [SEP] token istelf. | |
num_seg_a = sep_index + 1 | |
# The remainder are segment B. | |
num_seg_b = len(input) - num_seg_a | |
# Construct the list of 0s and 1s. | |
segment_ids = [0]*num_seg_a + [1]*num_seg_b | |
# There should be a segment_id for every input token. | |
assert len(segment_ids) == len(input) | |
# ======== Evaluate ======== | |
# Run our example through the model. | |
outputs = model(torch.tensor([input]), # The tokens representing our input text. | |
token_type_ids=torch.tensor([segment_ids]), # The segment IDs to differentiate question from answer_text | |
return_dict=True) | |
start_scores = outputs.start_logits | |
end_scores = outputs.end_logits | |
max_start_score = torch.max(start_scores) | |
max_end_score = torch.max(end_scores) | |
print(max_start_score) | |
print(max_end_score) | |
# ======== Reconstruct Answer ======== | |
# Find the tokens with the highest `start` and `end` scores. | |
answer_start = torch.argmax(start_scores) | |
answer_end = torch.argmax(end_scores) | |
# Get the string versions of the input tokens. | |
tokens = tokenizer.convert_ids_to_tokens(input_ids) | |
# Start with the first token. | |
answer = tokens[answer_start] | |
# Select the remaining answer tokens and join them with whitespace. | |
for i in range(answer_start + 1, answer_end + 1): | |
# If it's a subword token, then recombine it with the previous token. | |
if tokens[i][0:2] == '##': | |
answer += tokens[i][2:] | |
# Otherwise, add a space then the token. | |
else: | |
answer += ' ' + tokens[i] | |
scores.append((max_start_score, max_end_score, answer)) | |
# Compare scores for answers found and each paragraph and pick the most relevant. | |
final_answer = max(scores, key=lambda x: x[0] + x[1])[2] | |
return final_answer | |
# =====[ DEFINE INTERFACE ]===== #' | |
title = "Azza Q/A Agent" | |
examples = [ | |
["Where is the Eiffel Tower?"], | |
["What is the population of France?"] | |
] | |
print("hello") | |
demo = gr.Interface( | |
title = title, | |
fn=answer_question, | |
inputs = "text", | |
outputs = "text", | |
examples=examples, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |