Azza / app.py
Walid Aissa
IT WORKS
77eba15
raw
history blame
6.18 kB
import os
import gradio as gr
import numpy as np
import wikipediaapi as wk
import wikipedia
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
BertForQuestionAnswering,
BertTokenizer
)
from transformers.pipelines import AggregationStrategy
import torch
print("hello")
# =====[ DEFINE PIPELINE ]===== #
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs
)
def postprocess(self, model_outputs):
results = super().postprocess(
model_outputs=model_outputs,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
return np.unique([result.get("word").strip() for result in results])
# =====[ LOAD PIPELINE ]===== #
keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel)
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
#TODO: add further preprocessing
def keyphrases_extraction(text: str) -> str:
keyphrases = extractor(text)
return keyphrases
def wikipedia_search(input: str) -> str:
input = input.replace("\n", " ")
keyphrases = keyphrases_extraction(input)
wiki = wk.Wikipedia('en')
try :
#TODO: add better extraction and search
if len(keyphrases) == 0:
return "Can you add more details to your question?"
query_suggestion = wikipedia.suggest(keyphrases[0])
if(query_suggestion != None):
results = wikipedia.search(query_suggestion)
else:
results = wikipedia.search(keyphrases[0])
index = 0
page = wiki.page(results[index])
while not ('.' in page.summary) or not page.exists():
index += 1
if index == len(results):
raise Exception
page = wiki.page(results[index])
return page.summary
except:
return "I cannot answer this question"
def answer_question(question):
context = wikipedia_search(question)
if (context == "I cannot answer this question") or (context == "Can you add more details to your question?"):
return context
# ======== Tokenize ========
# Apply the tokenizer to the input text, treating them as a text-pair.
input_ids = tokenizer.encode(question, context)
question_ids = input_ids[:input_ids.index(tokenizer.sep_token_id)+1]
# Report how long the input sequence is. if longer than 512 tokens divide it multiple sequences
length_of_group = 512 - len(question_ids)
input_ids_without_question = input_ids[input_ids.index(tokenizer.sep_token_id)+1:]
print(f"Query has {len(input_ids)} tokens, divided in {len(input_ids_without_question)//length_of_group + 1}.\n")
input_ids_split = []
for group in range(len(input_ids_without_question)//length_of_group + 1):
input_ids_split.append(question_ids + input_ids_without_question[length_of_group*group:length_of_group*(group+1)-1])
input_ids_split.append(question_ids + input_ids_without_question[length_of_group*(len(input_ids_without_question)//length_of_group + 1):len(input_ids_without_question)-1])
scores = []
for input in input_ids_split:
# ======== Set Segment IDs ========
# Search the input_ids for the first instance of the `[SEP]` token.
sep_index = input.index(tokenizer.sep_token_id)
# The number of segment A tokens includes the [SEP] token istelf.
num_seg_a = sep_index + 1
# The remainder are segment B.
num_seg_b = len(input) - num_seg_a
# Construct the list of 0s and 1s.
segment_ids = [0]*num_seg_a + [1]*num_seg_b
# There should be a segment_id for every input token.
assert len(segment_ids) == len(input)
# ======== Evaluate ========
# Run our example through the model.
outputs = model(torch.tensor([input]), # The tokens representing our input text.
token_type_ids=torch.tensor([segment_ids]), # The segment IDs to differentiate question from answer_text
return_dict=True)
start_scores = outputs.start_logits
end_scores = outputs.end_logits
max_start_score = torch.max(start_scores)
max_end_score = torch.max(end_scores)
print(max_start_score)
print(max_end_score)
# ======== Reconstruct Answer ========
# Find the tokens with the highest `start` and `end` scores.
answer_start = torch.argmax(start_scores)
answer_end = torch.argmax(end_scores)
# Get the string versions of the input tokens.
tokens = tokenizer.convert_ids_to_tokens(input_ids)
# Start with the first token.
answer = tokens[answer_start]
# Select the remaining answer tokens and join them with whitespace.
for i in range(answer_start + 1, answer_end + 1):
# If it's a subword token, then recombine it with the previous token.
if tokens[i][0:2] == '##':
answer += tokens[i][2:]
# Otherwise, add a space then the token.
else:
answer += ' ' + tokens[i]
scores.append((max_start_score, max_end_score, answer))
# Compare scores for answers found and each paragraph and pick the most relevant.
final_answer = max(scores, key=lambda x: x[0] + x[1])[2]
return final_answer
# =====[ DEFINE INTERFACE ]===== #'
title = "Azza Conversational Agent"
examples = [
["Where is the Eiffel Tower?"],
["What is the population of France?"]
]
print("hello")
demo = gr.Interface(
title = title,
fn=answer_question,
inputs = "text",
outputs = "text",
examples=examples,
)
if __name__ == "__main__":
demo.launch()