Spaces:
Runtime error
Runtime error
Walid Aissa
commited on
Commit
·
41cb046
1
Parent(s):
22eefa0
bert question answering model trained on squad added
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
|
|
3 |
import wikipediaapi as wk
|
4 |
from transformers import (
|
5 |
TokenClassificationPipeline,
|
6 |
AutoModelForTokenClassification,
|
7 |
AutoTokenizer,
|
8 |
)
|
|
|
9 |
from transformers.pipelines import AggregationStrategy
|
10 |
-
|
|
|
11 |
|
12 |
# =====[ DEFINE PIPELINE ]===== #
|
13 |
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
@@ -27,8 +30,10 @@ class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
|
27 |
return np.unique([result.get("word").strip() for result in results])
|
28 |
|
29 |
# =====[ LOAD PIPELINE ]===== #
|
30 |
-
|
31 |
-
extractor = KeyphraseExtractionPipeline(model=
|
|
|
|
|
32 |
|
33 |
#TODO: add further preprocessing
|
34 |
def keyphrases_extraction(text: str) -> str:
|
@@ -53,6 +58,71 @@ def wikipedia_search(input: str) -> str:
|
|
53 |
return page.summary
|
54 |
except:
|
55 |
return "I cannot answer this question"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# =====[ DEFINE INTERFACE ]===== #'
|
58 |
title = "Azza Chatbot"
|
@@ -62,10 +132,11 @@ examples = [
|
|
62 |
]
|
63 |
|
64 |
|
|
|
65 |
demo = gr.Interface(
|
66 |
title = title,
|
67 |
|
68 |
-
fn=
|
69 |
inputs = "text",
|
70 |
outputs = "text",
|
71 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
import wikipediaapi as wk
|
5 |
from transformers import (
|
6 |
TokenClassificationPipeline,
|
7 |
AutoModelForTokenClassification,
|
8 |
AutoTokenizer,
|
9 |
)
|
10 |
+
import torch
|
11 |
from transformers.pipelines import AggregationStrategy
|
12 |
+
from transformers import BertForQuestionAnswering
|
13 |
+
from transformers import BertTokenizer
|
14 |
|
15 |
# =====[ DEFINE PIPELINE ]===== #
|
16 |
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
|
|
30 |
return np.unique([result.get("word").strip() for result in results])
|
31 |
|
32 |
# =====[ LOAD PIPELINE ]===== #
|
33 |
+
keyPhraseExtractionModel = "ml6team/keyphrase-extraction-kbir-inspec"
|
34 |
+
extractor = KeyphraseExtractionPipeline(model=keyPhraseExtractionModel)
|
35 |
+
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
|
36 |
+
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
|
37 |
|
38 |
#TODO: add further preprocessing
|
39 |
def keyphrases_extraction(text: str) -> str:
|
|
|
58 |
return page.summary
|
59 |
except:
|
60 |
return "I cannot answer this question"
|
61 |
+
|
62 |
+
def answer_question(question):
|
63 |
+
|
64 |
+
context = wikipedia_search(question)
|
65 |
+
if context == "I cannot answer this question":
|
66 |
+
return context
|
67 |
+
|
68 |
+
# ======== Tokenize ========
|
69 |
+
# Apply the tokenizer to the input text, treating them as a text-pair.
|
70 |
+
input_ids = tokenizer.encode(question, context)
|
71 |
+
|
72 |
+
# Report how long the input sequence is. if longer than 512 tokens, make it shorter
|
73 |
+
while(len(input_ids) > 512):
|
74 |
+
input_ids.pop()
|
75 |
+
|
76 |
+
print('Query has {:,} tokens.\n'.format(len(input_ids)))
|
77 |
+
|
78 |
+
# ======== Set Segment IDs ========
|
79 |
+
# Search the input_ids for the first instance of the `[SEP]` token.
|
80 |
+
sep_index = input_ids.index(tokenizer.sep_token_id)
|
81 |
+
|
82 |
+
# The number of segment A tokens includes the [SEP] token istelf.
|
83 |
+
num_seg_a = sep_index + 1
|
84 |
+
|
85 |
+
# The remainder are segment B.
|
86 |
+
num_seg_b = len(input_ids) - num_seg_a
|
87 |
+
|
88 |
+
# Construct the list of 0s and 1s.
|
89 |
+
segment_ids = [0]*num_seg_a + [1]*num_seg_b
|
90 |
+
|
91 |
+
# There should be a segment_id for every input token.
|
92 |
+
assert len(segment_ids) == len(input_ids)
|
93 |
+
|
94 |
+
# ======== Evaluate ========
|
95 |
+
# Run our example through the model.
|
96 |
+
outputs = model(torch.tensor([input_ids]), # The tokens representing our input text.
|
97 |
+
token_type_ids=torch.tensor([segment_ids]), # The segment IDs to differentiate question from answer_text
|
98 |
+
return_dict=True)
|
99 |
+
|
100 |
+
start_scores = outputs.start_logits
|
101 |
+
end_scores = outputs.end_logits
|
102 |
+
|
103 |
+
# ======== Reconstruct Answer ========
|
104 |
+
# Find the tokens with the highest `start` and `end` scores.
|
105 |
+
answer_start = torch.argmax(start_scores)
|
106 |
+
answer_end = torch.argmax(end_scores)
|
107 |
+
|
108 |
+
# Get the string versions of the input tokens.
|
109 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
110 |
+
|
111 |
+
# Start with the first token.
|
112 |
+
answer = tokens[answer_start]
|
113 |
+
|
114 |
+
# Select the remaining answer tokens and join them with whitespace.
|
115 |
+
for i in range(answer_start + 1, answer_end + 1):
|
116 |
+
|
117 |
+
# If it's a subword token, then recombine it with the previous token.
|
118 |
+
if tokens[i][0:2] == '##':
|
119 |
+
answer += tokens[i][2:]
|
120 |
+
|
121 |
+
# Otherwise, add a space then the token.
|
122 |
+
else:
|
123 |
+
answer += ' ' + tokens[i]
|
124 |
+
|
125 |
+
return 'Answer: "' + answer + '"'
|
126 |
|
127 |
# =====[ DEFINE INTERFACE ]===== #'
|
128 |
title = "Azza Chatbot"
|
|
|
132 |
]
|
133 |
|
134 |
|
135 |
+
|
136 |
demo = gr.Interface(
|
137 |
title = title,
|
138 |
|
139 |
+
fn=answer_question,
|
140 |
inputs = "text",
|
141 |
outputs = "text",
|
142 |
|