Spaces:
Runtime error
Runtime error
Jingxiang Mo
commited on
Commit
•
9522bb7
1
Parent(s):
a381bc0
debug
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import wikipediaapi as wk
|
4 |
-
|
5 |
-
|
6 |
from transformers import (
|
7 |
TokenClassificationPipeline,
|
8 |
AutoModelForTokenClassification,
|
@@ -11,6 +9,7 @@ from transformers import (
|
|
11 |
from transformers.pipelines import AggregationStrategy
|
12 |
import numpy as np
|
13 |
|
|
|
14 |
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
15 |
def __init__(self, model, *args, **kwargs):
|
16 |
super().__init__(
|
@@ -26,13 +25,35 @@ class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
|
26 |
aggregation_strategy=AggregationStrategy.SIMPLE,
|
27 |
)
|
28 |
return np.unique([result.get("word").strip() for result in results])
|
29 |
-
|
30 |
-
#
|
31 |
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
|
32 |
extractor = KeyphraseExtractionPipeline(model=model_name)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
36 |
input = input.replace("\n", " ")
|
37 |
keyphrases = extractor(input)
|
38 |
out = "The Key Phrases in your text are:\n\n"
|
@@ -44,16 +65,22 @@ def wikipedia_search(input):
|
|
44 |
input = input.replace("\n", " ")
|
45 |
keyphrases = extractor(input)
|
46 |
wiki = wk.Wikipedia('en')
|
47 |
-
|
48 |
-
|
49 |
-
if page.exists():
|
50 |
-
break
|
51 |
return page.summary
|
52 |
|
53 |
|
54 |
-
demo = gr.Interface(fn=wikipedia_search, inputs = "text", outputs = "text")
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import wikipediaapi as wk
|
|
|
|
|
4 |
from transformers import (
|
5 |
TokenClassificationPipeline,
|
6 |
AutoModelForTokenClassification,
|
|
|
9 |
from transformers.pipelines import AggregationStrategy
|
10 |
import numpy as np
|
11 |
|
12 |
+
# =====[ DEFINE PIPELINE ]===== #
|
13 |
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
14 |
def __init__(self, model, *args, **kwargs):
|
15 |
super().__init__(
|
|
|
25 |
aggregation_strategy=AggregationStrategy.SIMPLE,
|
26 |
)
|
27 |
return np.unique([result.get("word").strip() for result in results])
|
28 |
+
|
29 |
+
# =====[ LOAD PIPELINE ]===== #
|
30 |
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
|
31 |
extractor = KeyphraseExtractionPipeline(model=model_name)
|
32 |
|
33 |
+
text = """
|
34 |
+
Keyphrase extraction is a technique in text analysis where you extract the
|
35 |
+
important keyphrases from a document. Thanks to these keyphrases humans can
|
36 |
+
understand the content of a text very quickly and easily without reading it
|
37 |
+
completely. Keyphrase extraction was first done primarily by human annotators,
|
38 |
+
who read the text in detail and then wrote down the most important keyphrases.
|
39 |
+
The disadvantage is that if you work with a lot of documents, this process
|
40 |
+
can take a lot of time.
|
41 |
+
|
42 |
+
Here is where Artificial Intelligence comes in. Currently, classical machine
|
43 |
+
learning methods, that use statistical and linguistic features, are widely used
|
44 |
+
for the extraction process. Now with deep learning, it is possible to capture
|
45 |
+
the semantic meaning of a text even better than these classical methods.
|
46 |
+
Classical methods look at the frequency, occurrence and order of words
|
47 |
+
in the text, whereas these neural approaches can capture long-term
|
48 |
+
semantic dependencies and context of words in a text.
|
49 |
+
""".replace("\n", " ")
|
50 |
+
|
51 |
+
keyphrases = extractor(text)
|
52 |
+
|
53 |
+
print(keyphrases)
|
54 |
|
55 |
+
|
56 |
+
def keyphrases_out(input):
|
57 |
input = input.replace("\n", " ")
|
58 |
keyphrases = extractor(input)
|
59 |
out = "The Key Phrases in your text are:\n\n"
|
|
|
65 |
input = input.replace("\n", " ")
|
66 |
keyphrases = extractor(input)
|
67 |
wiki = wk.Wikipedia('en')
|
68 |
+
|
69 |
+
page = wiki.page("")
|
|
|
|
|
70 |
return page.summary
|
71 |
|
72 |
|
|
|
73 |
|
74 |
+
|
75 |
+
# for k in keyphrases:
|
76 |
+
# page = wiki.page(k)
|
77 |
+
# if page.exists():
|
78 |
+
# break
|
79 |
+
# return page.summary
|
80 |
+
|
81 |
+
# =====[ DEFINE INTERFACE ]===== #'
|
82 |
+
# demo = gr.Interface(fn=wikipedia_search, inputs = "text", outputs = "text")
|
83 |
+
# demo.launch(share=True)
|
84 |
|
85 |
|
86 |
|