File size: 1,436 Bytes
cb6a0c6
9754968
cb6a0c6
 
9754968
4c40718
cb6a0c6
 
 
 
 
 
 
 
 
 
 
 
 
f6404c7
cb6a0c6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import re
import gradio as gr
import torch
from transformers import UdopProcessor, UdopForConditionalGeneration

repo_id = "jinhybr/UDP-RVL-CDIP"

processor = UdopProcessor.from_pretrained(repo_id)
model = UdopForConditionalGeneration.from_pretrained(repo_id)

def process_document(image, question):
    
    pixel_values = processor(image, return_tensors="pt").pixel_values
    encoding = processor(images=image, text=question, return_tensors="pt")
    outputs = model.generate(**encoding, max_new_tokens=20)
    generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
    
    return generated_text

description = "UDOP for DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2212.02623.pdf' target='_blank'>Unifying Vision, Text, and Layout for Universal Document Processing</a> | <a href='https://github.com/microsoft/UDOP' target='_blank'>Github Repo</a></p>"

demo = gr.Interface(
    fn=process_document,
    inputs=["image", gr.Textbox(label = "Question" )],
    outputs=gr.Textbox(label = "Response" ),
    title="Demo: UDOP for DocVQA",
    description=description,
    article=article,
    examples=[["example_1.png", "When is the coffee break?"]],
    cache_examples=True)

demo.launch()