File size: 17,519 Bytes
c5f2040 814873b c5f2040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
from curses import delay_output
import gc, os
import numpy as np
import pandas as pd
import wandb
from scipy.stats import pearsonr
import util
from util.utils import *
from util.attention_flow import *
import torch
import torch.nn as nn
import sklearn as sk
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger, TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from transformers import AutoConfig, AutoTokenizer, RobertaModel, BertModel
from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error
class markerDataset(Dataset):
def __init__(self, list_IDs, labels, df_dti, d_tokenizer, p_tokenizer):
'Initialization'
self.labels = labels
self.list_IDs = list_IDs
self.df = df_dti
self.d_tokenizer = d_tokenizer
self.p_tokenizer = p_tokenizer
def convert_data(self, acc_data, don_data):
d_inputs = self.d_tokenizer(acc_data, return_tensors="pt")
p_inputs = self.d_tokenizer(don_data, return_tensors="pt")
acc_input_ids = d_inputs['input_ids']
acc_attention_mask = d_inputs['attention_mask']
acc_inputs = {'input_ids': acc_input_ids, 'attention_mask': acc_attention_mask}
don_input_ids = p_inputs['input_ids']
don_attention_mask = p_inputs['attention_mask']
don_inputs = {'input_ids': don_input_ids, 'attention_mask': don_attention_mask}
return acc_inputs, don_inputs
def tokenize_data(self, acc_data, don_data):
tokenize_acc = ['[CLS]'] + self.d_tokenizer.tokenize(acc_data) + ['[SEP]']
tokenize_don = ['[CLS]'] + self.p_tokenizer.tokenize(don_data) + ['[SEP]']
return tokenize_acc, tokenize_don
def __len__(self):
'Denotes the total number of samples'
return len(self.list_IDs)
def __getitem__(self, index):
'Generates one sample of data'
index = self.list_IDs[index]
acc_data = self.df.iloc[index]['acceptor']
don_data = self.df.iloc[index]['donor']
d_inputs = self.d_tokenizer(acc_data, padding='max_length', max_length=400, truncation=True, return_tensors="pt")
p_inputs = self.p_tokenizer(don_data, padding='max_length', max_length=400, truncation=True, return_tensors="pt")
d_input_ids = d_inputs['input_ids'].squeeze()
d_attention_mask = d_inputs['attention_mask'].squeeze()
p_input_ids = p_inputs['input_ids'].squeeze()
p_attention_mask = p_inputs['attention_mask'].squeeze()
labels = torch.as_tensor(self.labels[index], dtype=torch.float)
dataset = [d_input_ids, d_attention_mask, p_input_ids, p_attention_mask, labels]
return dataset
class markerDataModule(pl.LightningDataModule):
def __init__(self, task_name, acc_model_name, don_model_name, num_workers, batch_size, traindata_rate = 1.0):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.task_name = task_name
self.traindata_rate = traindata_rate
self.d_tokenizer = AutoTokenizer.from_pretrained(acc_model_name)
self.p_tokenizer = AutoTokenizer.from_pretrained(don_model_name)
self.df_train = None
self.df_val = None
self.df_test = None
self.load_testData = True
self.train_dataset = None
self.valid_dataset = None
self.test_dataset = None
def get_task(self, task_name):
if task_name.lower() == 'OSC':
return './dataset/OSC/'
elif task_name.lower() == 'merge':
self.load_testData = False
return './dataset/MergeDataset'
def prepare_data(self):
# Use this method to do things that might write to disk or that need to be done only from
# a single process in distributed settings.
dataFolder = './dataset/OSC'
self.df_train = pd.read_csv(dataFolder + '/train.csv')
self.df_val = pd.read_csv(dataFolder + '/val.csv')
## -- Data Lenght Rate apply -- ##
traindata_length = int(len(self.df_train) * self.traindata_rate)
validdata_length = int(len(self.df_val) * self.traindata_rate)
self.df_train = self.df_train[:traindata_length]
self.df_val = self.df_val[:validdata_length]
if self.load_testData is True:
self.df_test = pd.read_csv(dataFolder + '/test.csv')
def setup(self, stage=None):
if stage == 'fit' or stage is None:
self.train_dataset = markerDataset(self.df_train.index.values, self.df_train.Label.values, self.df_train,
self.d_tokenizer, self.p_tokenizer)
self.valid_dataset = markerDataset(self.df_val.index.values, self.df_val.Label.values, self.df_val,
self.d_tokenizer, self.p_tokenizer)
if self.load_testData is True:
self.test_dataset = markerDataset(self.df_test.index.values, self.df_test.Label.values, self.df_test,
self.d_tokenizer, self.p_tokenizer)
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers)
def val_dataloader(self):
return DataLoader(self.valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers)
def test_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers)
class markerModel(pl.LightningModule):
def __init__(self, acc_model_name, don_model_name, lr, dropout, layer_features, loss_fn = "smooth", layer_limit = True, d_pretrained=True, p_pretrained=True):
super().__init__()
self.lr = lr
self.loss_fn = loss_fn
self.criterion = torch.nn.MSELoss()
self.criterion_smooth = torch.nn.SmoothL1Loss()
# self.sigmoid = nn.Sigmoid()
#-- Pretrained Model Setting
acc_config = AutoConfig.from_pretrained("seyonec/SMILES_BPE_PubChem_100k_shard00")
if d_pretrained is False:
self.d_model = RobertaModel(acc_config)
print('acceptor model without pretraining')
else:
self.d_model = RobertaModel.from_pretrained(acc_model_name, num_labels=2,
output_hidden_states=True,
output_attentions=True)
don_config = AutoConfig.from_pretrained("seyonec/SMILES_BPE_PubChem_100k_shard00")
if p_pretrained is False:
self.p_model = RobertaModel(don_config)
print('donor model without pretraining')
else:
self.p_model = RobertaModel.from_pretrained(don_model_name,
output_hidden_states=True,
output_attentions=True)
#-- Decoder Layer Setting
layers = []
firstfeature = self.d_model.config.hidden_size + self.p_model.config.hidden_size
for feature_idx in range(0, len(layer_features) - 1):
layers.append(nn.Linear(firstfeature, layer_features[feature_idx]))
firstfeature = layer_features[feature_idx]
if feature_idx is len(layer_features)-2:
layers.append(nn.ReLU())
else:
layers.append(nn.ReLU())
if dropout > 0:
layers.append(nn.Dropout(dropout))
layers.append(nn.Linear(firstfeature, layer_features[-1]))
self.decoder = nn.Sequential(*layers)
self.save_hyperparameters()
def forward(self, acc_inputs, don_inputs):
d_outputs = self.d_model(acc_inputs['input_ids'], acc_inputs['attention_mask'])
p_outputs = self.p_model(don_inputs['input_ids'], don_inputs['attention_mask'])
outs = torch.cat((d_outputs.last_hidden_state[:, 0], p_outputs.last_hidden_state[:, 0]), dim=1)
outs = self.decoder(outs)
return outs
def attention_output(self, acc_inputs, don_inputs):
d_outputs = self.d_model(acc_inputs['input_ids'], acc_inputs['attention_mask'])
p_outputs = self.p_model(don_inputs['input_ids'], don_inputs['attention_mask'])
outs = torch.cat((d_outputs.last_hidden_state[:, 0], p_outputs.last_hidden_state[:, 0]), dim=1)
outs = self.decoder(outs)
return d_outputs['attentions'], p_outputs['attentions'], outs
def training_step(self, batch, batch_idx):
acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
labels = batch[4]
output = self(acc_inputs, don_inputs)
logits = output.squeeze(dim=1)
if self.loss_fn == 'MSE':
loss = self.criterion(logits, labels)
else:
loss = self.criterion_smooth(logits, labels)
self.log("train_loss", loss, on_step=False, on_epoch=True, logger=True)
# print("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
labels = batch[4]
output = self(acc_inputs, don_inputs)
logits = output.squeeze(dim=1)
if self.loss_fn == 'MSE':
loss = self.criterion(logits, labels)
else:
loss = self.criterion_smooth(logits, labels)
self.log("valid_loss", loss, on_step=False, on_epoch=True, logger=True)
# print("valid_loss", loss)
return {"logits": logits, "labels": labels}
def validation_step_end(self, outputs):
return {"logits": outputs['logits'], "labels": outputs['labels']}
def validation_epoch_end(self, outputs):
preds = self.convert_outputs_to_preds(outputs)
labels = torch.as_tensor(torch.cat([output['labels'] for output in outputs], dim=0), dtype=torch.int)
mae, mse, r2,r = self.log_score(preds, labels)
self.log("mae", mae, on_step=False, on_epoch=True, logger=True)
self.log("mse", mse, on_step=False, on_epoch=True, logger=True)
self.log("r2", r2, on_step=False, on_epoch=True, logger=True)
def test_step(self, batch, batch_idx):
acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
labels = batch[4]
output = self(acc_inputs, don_inputs)
logits = output.squeeze(dim=1)
if self.loss_fn == 'MSE':
loss = self.criterion(logits, labels)
else:
loss = self.criterion_smooth(logits, labels)
self.log("test_loss", loss, on_step=False, on_epoch=True, logger=True)
return {"logits": logits, "labels": labels}
def test_step_end(self, outputs):
return {"logits": outputs['logits'], "labels": outputs['labels']}
def test_epoch_end(self, outputs):
preds = self.convert_outputs_to_preds(outputs)
labels = torch.as_tensor(torch.cat([output['labels'] for output in outputs], dim=0), dtype=torch.int)
mae, mse, r2,r = self.log_score(preds, labels)
self.log("mae", mae, on_step=False, on_epoch=True, logger=True)
self.log("mse", mse, on_step=False, on_epoch=True, logger=True)
self.log("r2", r2, on_step=False, on_epoch=True, logger=True)
self.log("r", r, on_step=False, on_epoch=True, logger=True)
def configure_optimizers(self):
param_optimizer = list(self.named_parameters())
no_decay = ["bias", "gamma", "beta"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay_rate": 0.0001
},
{
"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay_rate": 0.0
},
]
optimizer = torch.optim.AdamW(
optimizer_grouped_parameters,
lr=self.lr,
)
return optimizer
def convert_outputs_to_preds(self, outputs):
logits = torch.cat([output['logits'] for output in outputs], dim=0)
return logits
def log_score(self, preds, labels):
y_pred = preds.detach().cpu().numpy()
y_label = labels.detach().cpu().numpy()
mae = mean_absolute_error(y_label, y_pred)
mse = mean_squared_error(y_label, y_pred)
r2=r2_score(y_label, y_pred)
r = pearsonr(y_label, y_pred)
print(f'\nmae : {mae}')
print(f'mse : {mse}')
print(f'r2 : {r2}')
print(f'r : {r}')
return mae, mse, r2, r
def main_wandb(config=None):
try:
if config is not None:
wandb.init(config=config, project=project_name)
else:
wandb.init(settings=wandb.Settings(console='off'))
config = wandb.config
pl.seed_everything(seed=config.num_seed)
dm = markerDataModule(config.task_name, config.d_model_name, config.p_model_name,
config.num_workers, config.batch_size, config.prot_maxlength, config.traindata_rate)
dm.prepare_data()
dm.setup()
model_type = str(config.pretrained['chem'])+"To"+str(config.pretrained['prot'])
#model_logger = WandbLogger(project=project_name)
checkpoint_callback = ModelCheckpoint(f"{config.task_name}_{model_type}_{config.lr}_{config.num_seed}", save_top_k=1, monitor="mae", mode="max")
trainer = pl.Trainer(
max_epochs=config.max_epoch,
precision=16,
#logger=model_logger,
callbacks=[checkpoint_callback],
accelerator='cpu',log_every_n_steps=40
)
if config.model_mode == "train":
model = markerModel(config.d_model_name, config.p_model_name,
config.lr, config.dropout, config.layer_features, config.loss_fn, config.layer_limit, config.pretrained['chem'], config.pretrained['prot'])
model.train()
trainer.fit(model, datamodule=dm)
model.eval()
trainer.test(model, datamodule=dm)
else:
model = markerModel.load_from_checkpoint(config.load_checkpoint)
model.eval()
trainer.test(model, datamodule=dm)
except Exception as e:
print(e)
def main_default(config):
try:
config = DictX(config)
pl.seed_everything(seed=config.num_seed)
dm = markerDataModule(config.task_name, config.d_model_name, config.p_model_name,
config.num_workers, config.batch_size, config.traindata_rate)
dm.prepare_data()
dm.setup()
model_type = str(config.pretrained['chem'])+"To"+str(config.pretrained['prot'])
# model_logger = TensorBoardLogger("./log", name=f"{config.task_name}_{model_type}_{config.num_seed}")
checkpoint_callback = ModelCheckpoint(f"{config.task_name}_{model_type}_{config.lr}_{config.num_seed}", save_top_k=1, monitor="mse", mode="max")
trainer = pl.Trainer(
max_epochs=config.max_epoch,
precision= 32,
# logger=model_logger,
callbacks=[checkpoint_callback],
accelerator='cpu',log_every_n_steps=40
)
if config.model_mode == "train":
model = markerModel(config.d_model_name, config.p_model_name,
config.lr, config.dropout, config.layer_features, config.loss_fn, config.layer_limit, config.pretrained['chem'], config.pretrained['prot'])
model.train()
trainer.fit(model, datamodule=dm)
model.eval()
trainer.test(model, datamodule=dm)
else:
model = markerModel.load_from_checkpoint(config.load_checkpoint)
model.eval()
trainer.test(model, datamodule=dm)
except Exception as e:
print(e)
if __name__ == '__main__':
using_wandb = False
if using_wandb == True:
#-- hyper param config file Load --##
config = load_hparams('config/config_hparam.json')
project_name = config["name"]
main_wandb(config)
##-- wandb Sweep Hyper Param Tuning --##
# config = load_hparams('config/config_sweep_bindingDB.json')
# project_name = config["name"]
# sweep_id = wandb.sweep(config, project=project_name)
# wandb.agent(sweep_id, main_wandb)
else:
config = load_hparams('config/config_hparam.json')
main_default(config)
|