File size: 17,519 Bytes
c5f2040
 
 
 
 
 
 
 
814873b
c5f2040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
from curses import delay_output
import gc, os
import numpy as np
import pandas as pd
import wandb
from scipy.stats import pearsonr
import util
from util.utils import *
from util.attention_flow import *

import torch
import torch.nn as nn

import sklearn as sk
from torch.utils.data import Dataset, DataLoader

import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger, TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from transformers import AutoConfig, AutoTokenizer, RobertaModel, BertModel
from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error

class markerDataset(Dataset):
    def __init__(self, list_IDs, labels, df_dti, d_tokenizer, p_tokenizer):
        'Initialization'
        self.labels = labels
        self.list_IDs = list_IDs
        self.df = df_dti

        self.d_tokenizer = d_tokenizer
        self.p_tokenizer = p_tokenizer

    

    def convert_data(self, acc_data, don_data):
        

        d_inputs = self.d_tokenizer(acc_data, return_tensors="pt")
        p_inputs = self.d_tokenizer(don_data, return_tensors="pt")

        acc_input_ids = d_inputs['input_ids']
        acc_attention_mask = d_inputs['attention_mask']
        acc_inputs = {'input_ids': acc_input_ids, 'attention_mask': acc_attention_mask}

        don_input_ids = p_inputs['input_ids']
        don_attention_mask = p_inputs['attention_mask']
        don_inputs = {'input_ids': don_input_ids, 'attention_mask': don_attention_mask}

        return acc_inputs, don_inputs

    def tokenize_data(self, acc_data, don_data):
        
        tokenize_acc = ['[CLS]'] + self.d_tokenizer.tokenize(acc_data) + ['[SEP]']
       
        tokenize_don = ['[CLS]'] + self.p_tokenizer.tokenize(don_data) + ['[SEP]']

        return tokenize_acc, tokenize_don

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.list_IDs)

    def __getitem__(self, index):
        'Generates one sample of data'
        index = self.list_IDs[index]
        acc_data = self.df.iloc[index]['acceptor']
        don_data = self.df.iloc[index]['donor']
    
        d_inputs = self.d_tokenizer(acc_data, padding='max_length', max_length=400, truncation=True, return_tensors="pt")
        p_inputs = self.p_tokenizer(don_data, padding='max_length', max_length=400, truncation=True, return_tensors="pt")

        d_input_ids = d_inputs['input_ids'].squeeze()
        d_attention_mask = d_inputs['attention_mask'].squeeze()
        p_input_ids = p_inputs['input_ids'].squeeze()
        p_attention_mask = p_inputs['attention_mask'].squeeze()

        labels = torch.as_tensor(self.labels[index], dtype=torch.float)

        dataset = [d_input_ids, d_attention_mask, p_input_ids, p_attention_mask, labels]
        return dataset


class markerDataModule(pl.LightningDataModule):
    def __init__(self, task_name, acc_model_name, don_model_name, num_workers, batch_size,  traindata_rate = 1.0):
        super().__init__()
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.task_name = task_name
       
        self.traindata_rate = traindata_rate
        
        self.d_tokenizer = AutoTokenizer.from_pretrained(acc_model_name)
        self.p_tokenizer = AutoTokenizer.from_pretrained(don_model_name)

        self.df_train = None
        self.df_val = None
        self.df_test = None

        self.load_testData = True

        self.train_dataset = None
        self.valid_dataset = None
        self.test_dataset = None

    def get_task(self, task_name):
        if task_name.lower() == 'OSC':
            return './dataset/OSC/'

        elif task_name.lower() == 'merge':
            self.load_testData = False
            return './dataset/MergeDataset'

    def prepare_data(self):
        # Use this method to do things that might write to disk or that need to be done only from
        # a single process in distributed settings.
        dataFolder = './dataset/OSC'
        
        self.df_train = pd.read_csv(dataFolder + '/train.csv')
        self.df_val = pd.read_csv(dataFolder + '/val.csv')
       
        ## -- Data Lenght Rate apply -- ##
        traindata_length = int(len(self.df_train) * self.traindata_rate)
        validdata_length = int(len(self.df_val) * self.traindata_rate)

        self.df_train = self.df_train[:traindata_length]
        self.df_val = self.df_val[:validdata_length]

        if self.load_testData is True:
            self.df_test = pd.read_csv(dataFolder + '/test.csv')

    def setup(self, stage=None):
        if stage == 'fit' or stage is None:
            self.train_dataset = markerDataset(self.df_train.index.values, self.df_train.Label.values, self.df_train,
                                                  self.d_tokenizer, self.p_tokenizer)
            self.valid_dataset = markerDataset(self.df_val.index.values, self.df_val.Label.values, self.df_val,
                                                  self.d_tokenizer, self.p_tokenizer)

        if self.load_testData is True:
            self.test_dataset = markerDataset(self.df_test.index.values, self.df_test.Label.values, self.df_test,
                                                self.d_tokenizer, self.p_tokenizer)

    def train_dataloader(self):
        return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers)

    def val_dataloader(self):
        return DataLoader(self.valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers)

    def test_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=self.batch_size, num_workers=self.num_workers)


class markerModel(pl.LightningModule):
    def __init__(self, acc_model_name, don_model_name, lr, dropout, layer_features, loss_fn = "smooth", layer_limit = True, d_pretrained=True, p_pretrained=True):
        super().__init__()
        self.lr = lr
        self.loss_fn = loss_fn
        self.criterion = torch.nn.MSELoss()
        self.criterion_smooth = torch.nn.SmoothL1Loss()
        # self.sigmoid = nn.Sigmoid()

        #-- Pretrained Model Setting
        acc_config = AutoConfig.from_pretrained("seyonec/SMILES_BPE_PubChem_100k_shard00")
        if d_pretrained is False:
            self.d_model = RobertaModel(acc_config)
            print('acceptor model without pretraining')
        else:
            self.d_model = RobertaModel.from_pretrained(acc_model_name, num_labels=2,
                                                        output_hidden_states=True,
                                                        output_attentions=True)
        
        don_config = AutoConfig.from_pretrained("seyonec/SMILES_BPE_PubChem_100k_shard00")

        if p_pretrained is False:
            self.p_model = RobertaModel(don_config)
            print('donor model without pretraining')
        else:
            self.p_model = RobertaModel.from_pretrained(don_model_name,
                                                        output_hidden_states=True,
                                                        output_attentions=True)
            
        #-- Decoder Layer Setting
        layers = []
        firstfeature = self.d_model.config.hidden_size + self.p_model.config.hidden_size
        for feature_idx in range(0, len(layer_features) - 1):
            layers.append(nn.Linear(firstfeature, layer_features[feature_idx]))
            firstfeature = layer_features[feature_idx]

            if feature_idx is len(layer_features)-2:
                layers.append(nn.ReLU())
            else:
                layers.append(nn.ReLU())
            
            if dropout > 0:
                layers.append(nn.Dropout(dropout))
    
        layers.append(nn.Linear(firstfeature, layer_features[-1]))
        
        self.decoder = nn.Sequential(*layers)

        self.save_hyperparameters()

    def forward(self, acc_inputs, don_inputs):
 
        d_outputs = self.d_model(acc_inputs['input_ids'], acc_inputs['attention_mask'])
        p_outputs = self.p_model(don_inputs['input_ids'], don_inputs['attention_mask'])

        outs = torch.cat((d_outputs.last_hidden_state[:, 0], p_outputs.last_hidden_state[:, 0]), dim=1)
        outs = self.decoder(outs)        

        return outs

    def attention_output(self, acc_inputs, don_inputs):
 
        d_outputs = self.d_model(acc_inputs['input_ids'], acc_inputs['attention_mask'])
        p_outputs = self.p_model(don_inputs['input_ids'], don_inputs['attention_mask'])

        outs = torch.cat((d_outputs.last_hidden_state[:, 0], p_outputs.last_hidden_state[:, 0]), dim=1)
        outs = self.decoder(outs)        

        return d_outputs['attentions'], p_outputs['attentions'], outs

    def training_step(self, batch, batch_idx):
 
        acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
       
        don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
         
        labels = batch[4]

        output = self(acc_inputs, don_inputs)
        logits = output.squeeze(dim=1)
        
        if self.loss_fn == 'MSE':
            loss = self.criterion(logits, labels)
        else:
            loss = self.criterion_smooth(logits, labels)
        
        self.log("train_loss", loss, on_step=False, on_epoch=True, logger=True)
       # print("train_loss", loss)
        return {"loss": loss}

    def validation_step(self, batch, batch_idx):
        acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
        don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
        labels = batch[4]
        
        output = self(acc_inputs, don_inputs)
        logits = output.squeeze(dim=1)
        
      
        if self.loss_fn == 'MSE':
            loss = self.criterion(logits, labels)
        else:
            loss = self.criterion_smooth(logits, labels)

        self.log("valid_loss", loss, on_step=False, on_epoch=True, logger=True)
       # print("valid_loss", loss)
        return {"logits": logits, "labels": labels}

    def validation_step_end(self, outputs):
        return {"logits": outputs['logits'], "labels": outputs['labels']}

    def validation_epoch_end(self, outputs):
        preds = self.convert_outputs_to_preds(outputs)
        labels = torch.as_tensor(torch.cat([output['labels'] for output in outputs], dim=0), dtype=torch.int)

        mae, mse, r2,r = self.log_score(preds, labels)
                   
        self.log("mae", mae, on_step=False, on_epoch=True, logger=True)
        self.log("mse", mse, on_step=False, on_epoch=True, logger=True)

        self.log("r2", r2, on_step=False, on_epoch=True, logger=True)

    def test_step(self, batch, batch_idx):
        acc_inputs = {'input_ids': batch[0], 'attention_mask': batch[1]}
        don_inputs = {'input_ids': batch[2], 'attention_mask': batch[3]}
        labels = batch[4]

        output = self(acc_inputs, don_inputs)
        logits = output.squeeze(dim=1)

        if self.loss_fn == 'MSE':
            loss = self.criterion(logits, labels)
        else:
            loss = self.criterion_smooth(logits, labels)

        self.log("test_loss", loss, on_step=False, on_epoch=True, logger=True)
        return {"logits": logits, "labels": labels}

    def test_step_end(self, outputs):
        return {"logits": outputs['logits'], "labels": outputs['labels']}

    def test_epoch_end(self, outputs):
        preds = self.convert_outputs_to_preds(outputs)
        labels = torch.as_tensor(torch.cat([output['labels'] for output in outputs], dim=0), dtype=torch.int)

        mae, mse, r2,r = self.log_score(preds, labels)

        self.log("mae", mae, on_step=False, on_epoch=True, logger=True)
        self.log("mse", mse, on_step=False, on_epoch=True, logger=True)
        self.log("r2", r2, on_step=False, on_epoch=True, logger=True)
        self.log("r", r, on_step=False, on_epoch=True, logger=True)
    def configure_optimizers(self):
    
        param_optimizer = list(self.named_parameters())
        
        no_decay = ["bias", "gamma", "beta"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                "weight_decay_rate": 0.0001
            },
            {
                "params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
                "weight_decay_rate": 0.0
            },
        ]
        optimizer = torch.optim.AdamW(
            optimizer_grouped_parameters,
            lr=self.lr,
        )
        return optimizer

    def convert_outputs_to_preds(self, outputs):
        logits = torch.cat([output['logits'] for output in outputs], dim=0)
        return logits

    def log_score(self, preds, labels):
        y_pred = preds.detach().cpu().numpy()
        y_label = labels.detach().cpu().numpy()
  
        mae = mean_absolute_error(y_label, y_pred)
        mse =  mean_squared_error(y_label, y_pred)
        r2=r2_score(y_label, y_pred)
        r = pearsonr(y_label, y_pred)
        print(f'\nmae : {mae}')        
        print(f'mse : {mse}')
        print(f'r2 : {r2}')
        print(f'r : {r}')

        return mae, mse, r2, r


def main_wandb(config=None):
    try:
        if config is not None:
            wandb.init(config=config, project=project_name)
        else:
            wandb.init(settings=wandb.Settings(console='off'))
    
        config = wandb.config
        pl.seed_everything(seed=config.num_seed)
 
        dm = markerDataModule(config.task_name, config.d_model_name, config.p_model_name,
                                 config.num_workers, config.batch_size, config.prot_maxlength, config.traindata_rate)
        dm.prepare_data()
        dm.setup()
 
        model_type = str(config.pretrained['chem'])+"To"+str(config.pretrained['prot'])
        #model_logger = WandbLogger(project=project_name)
        checkpoint_callback = ModelCheckpoint(f"{config.task_name}_{model_type}_{config.lr}_{config.num_seed}", save_top_k=1, monitor="mae", mode="max")
    
        trainer = pl.Trainer(
                             max_epochs=config.max_epoch,
                             precision=16,
                             #logger=model_logger,
                             callbacks=[checkpoint_callback],
                             accelerator='cpu',log_every_n_steps=40
                             )


        if config.model_mode == "train":
            model = markerModel(config.d_model_name, config.p_model_name,
                               config.lr, config.dropout, config.layer_features, config.loss_fn, config.layer_limit, config.pretrained['chem'], config.pretrained['prot'])
            model.train()
            trainer.fit(model, datamodule=dm)

            model.eval()
            trainer.test(model, datamodule=dm)

        else:
            model = markerModel.load_from_checkpoint(config.load_checkpoint)
            
            model.eval()
            trainer.test(model, datamodule=dm)
            
    except Exception as e:
        print(e)


def main_default(config):
    try:
        config = DictX(config)
        pl.seed_everything(seed=config.num_seed)
        
        dm = markerDataModule(config.task_name, config.d_model_name, config.p_model_name,
                                 config.num_workers, config.batch_size, config.traindata_rate)
        
        dm.prepare_data()
        dm.setup()   
        model_type = str(config.pretrained['chem'])+"To"+str(config.pretrained['prot'])
       # model_logger = TensorBoardLogger("./log", name=f"{config.task_name}_{model_type}_{config.num_seed}")
        checkpoint_callback = ModelCheckpoint(f"{config.task_name}_{model_type}_{config.lr}_{config.num_seed}", save_top_k=1, monitor="mse", mode="max")
    
        trainer = pl.Trainer(
                             max_epochs=config.max_epoch,
                             precision= 32,
                            # logger=model_logger,
                             callbacks=[checkpoint_callback],
                             accelerator='cpu',log_every_n_steps=40
                             )

        
        if config.model_mode == "train":
            model = markerModel(config.d_model_name, config.p_model_name,
                               config.lr, config.dropout, config.layer_features, config.loss_fn, config.layer_limit, config.pretrained['chem'], config.pretrained['prot'])
            
            model.train()
            
            trainer.fit(model, datamodule=dm)

            model.eval()
            trainer.test(model, datamodule=dm)
            
        else:
            model = markerModel.load_from_checkpoint(config.load_checkpoint)
            
            model.eval()
            trainer.test(model, datamodule=dm)
    except Exception as e:
        print(e)


if __name__ == '__main__':
    using_wandb = False
    
    if using_wandb == True:
        #-- hyper param config file Load --##
        config = load_hparams('config/config_hparam.json')
        project_name = config["name"]
   
        main_wandb(config)

        ##-- wandb Sweep Hyper Param Tuning --##
        # config = load_hparams('config/config_sweep_bindingDB.json')
        # project_name = config["name"]
        # sweep_id = wandb.sweep(config, project=project_name)
        # wandb.agent(sweep_id, main_wandb)

    else:
        config = load_hparams('config/config_hparam.json')
        
        main_default(config)