Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import streamlit as st | |
import pandas as pd | |
import rdkit | |
import streamlit_ketcher | |
from streamlit_ketcher import st_ketcher | |
import abcBERT | |
import RF | |
from streamlit_gsheets import GSheetsConnection | |
# Page setup | |
st.set_page_config(page_title="DeepAcceptor", page_icon="🔋", layout="wide") | |
st.title("🔋DeepAcceptor") | |
# Connect to the Google Sheet | |
url1 = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=accept" | |
url = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=111" | |
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8') | |
text_search = st.text_input("🔍Search papers or molecules", value="") | |
m1 = df1["name"].str.contains(text_search) | |
m2 = df1["reference"].str.contains(text_search) | |
df_search = df1[m1 | m2] | |
if text_search: | |
st.write(df_search) | |
st.download_button( "⬇️ Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True) | |
edited_df = st.data_editor(df1, num_rows="dynamic") | |
edited_df.to_csv(url) | |
st.download_button( | |
"⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True | |
) | |
molecule = st.text_input("📋Molecule") | |
smile_code = st_ketcher(molecule) | |
st.markdown(f"✨Smiles code: {smile_code}") | |
P = RF.main( str(smile_code ) ) | |
st.markdown(f"⚡PCE predicted by RF: {P}") | |
try: | |
pce = abcBERT.main( str(smile_code ) ) | |
st.markdown(f"⚡PCE predicted by abcBERT: {pce}") | |
except: | |
st.markdown(f"⚡PCE predicted by abcBERT: Running") | |