File size: 5,497 Bytes
134cb11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import json
import numpy as np
from infer_utils import create_mask
from shapely.wkt import loads
from collections import defaultdict
from tqdm import tqdm

def clean_string(s):
    return s.replace(' ', '-').replace('.', '').lower()

def get_class_dict(dataset):
    if dataset == "qfabric":
        class_dict = {
            "temporal_region_based_question_answering: What is the development status in this region [bbox] in image N?":
            {
                "prior-construction": 1, 
                "greenland ": 2, 
                "land-cleared": 3, 
                "excavation": 4, 
                "materials-dumped": 5, 
                "construction-started": 6, 
                "construction-midway": 7, 
                "construction-done": 8, 
                "operational": 9
            },
            "region_based_question_answering: Identify the type of urban development that has occurred in this area [bbox].": 
            {
                "residential": 10,
                "commercial": 11,
                "industrial": 12,
                "road": 13,
                "demolition": 14,
                "mega-projects": 15
            }
        }
    elif dataset == "xbd":
        class_dict = {
            "classification: Classify the level of damage experienced by the building at location [bbox] in the second image. Choose from: No damage, Minor Damage, Major Damage, Destroyed.": 
            {
                "no-damage": 1,
                "minor-damage": 2,
                "major-damage": 3,
                "destroyed": 4,
            }
        }
    else:
        raise ValueError(f"Dataset {dataset} should not be evaluated on segmentation classification.")
    return class_dict



def classification_segmentation(answer_path, dataset, per_class_f1=False, height=256, width=256):
    """
    Given the path to the answer file, this function creates segmentation masks on the original polygon for the predicted and ground truth classes.
    Returns the class-weighted per-pixel F1 between predicted and ground-truth masks.
    """
    with open(answer_path) as f:
        results = json.load(f)

    classes = get_class_dict(dataset)
    class_stats = defaultdict(lambda: {'tp': 0, 'fp': 0, 'fn': 0, 'count': 0})

    for result in tqdm(results.values()):
        if result['task'] not in classes:
            continue
        class_dict = classes[result['task']]
        predicted_class = clean_string(result['predicted'])
        try:
            ground_truth_class = clean_string(result["ground_truth"])
        except:
            ground_truth_class = clean_string(result["original_answer"])
        original_polygon = loads(result['original_input_polygon'])
        
        pred_msk = np.zeros((height, width), dtype='uint8')
        gt_msk = np.zeros((height, width), dtype='uint8')
        _msk = create_mask(original_polygon, im_size=(height, width))

        if predicted_class not in class_dict or ground_truth_class not in class_dict:
            continue
        
        pred_label = class_dict[predicted_class]
        gt_label = class_dict[ground_truth_class]
        pred_msk[_msk > 0] = pred_label
        gt_msk[_msk > 0] = gt_label

        for label in class_dict.values():
            pred_mask = (pred_msk == label)
            gt_mask = (gt_msk == label)
            tp = np.sum(pred_mask & gt_mask)
            fp = np.sum(pred_mask & ~gt_mask)
            fn = np.sum(~pred_mask & gt_mask)
            
            class_stats[label]['tp'] += tp
            class_stats[label]['fp'] += fp
            class_stats[label]['fn'] += fn
            class_stats[label]['count'] += np.sum(gt_mask)

    
    scores_dict = {}

    for task, class_info in classes.items():
        print(f"Task: {task}")
        class_f1_scores = {}
        weighted_f1_score = 0
        total_weight = 0

        tp = 0
        fp = 0
        fn = 0
        for class_name, class_label in class_info.items():
            stats = class_stats[class_label]
            total_samples = sum(stats['count'] for label, stats in class_stats.items() if label in class_info.values())

            if stats['tp'] + stats['fp'] == 0 or stats['tp'] + stats['fn'] == 0:
                f1 = 0.0
            else:
                precision = stats['tp'] / (stats['tp'] + stats['fp'])
                recall = stats['tp'] / (stats['tp'] + stats['fn'])
                if precision + recall == 0:
                    f1 = 0.0
                else:
                    f1 = 2 * (precision * recall) / (precision + recall)
            class_f1_scores[class_name] = f1

            if stats['count'] > 0:
                prevalence_inv = total_samples / stats['count']
                weighted_f1_score += f1 * prevalence_inv
                total_weight += prevalence_inv
            
            tp += stats['tp']
            fp += stats['fp']
            fn += stats['fn']
        
        if tp + fp == 0 or tp + fn == 0:
            micro_f1 = 0.0
        else:
            micro_f1 = tp / (tp + 0.5 * (fp + fn))

        if total_weight > 0:
            weighted_f1_score /= total_weight
        else:
            weighted_f1_score = 0.0

        scores_dict[task] = (class_f1_scores, weighted_f1_score)
        print(f"Per-class F1 scores: {class_f1_scores}")
        if dataset == 'qfabric':
            print(f"Micro average F1 score: ", micro_f1)
        else: 
            print(f"Weighted average F1 score: {weighted_f1_score}")
    
    return scores_dict