Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import json | |
import logging | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image | |
from huggingface_hub import login | |
from diffusers.utils import load_image | |
from lora_loading_patch import load_lora_into_transformer | |
import time | |
from datetime import datetime | |
from io import BytesIO | |
import torch.nn.functional as F | |
from PIL import Image, ImageFilter | |
import time | |
import boto3 | |
from io import BytesIO | |
import re | |
import json | |
import random | |
import string | |
# Login Hugging Face Hub | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token=HF_TOKEN) | |
import diffusers | |
# init | |
dtype = torch.bfloat16 | |
device = "cuda:0" | |
print(device) | |
base_model = "black-forest-labs/FLUX.1-dev" | |
# load pipe | |
txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype) | |
txt2img_pipe = txt2img_pipe.to(device) | |
txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer) | |
MAX_SEED = 2**32 - 1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) | |
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): | |
with calculateDuration("Upload images"): | |
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) | |
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" | |
s3 = boto3.client( | |
's3', | |
endpoint_url=connectionUrl, | |
region_name='auto', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key | |
) | |
current_time = datetime.now().strftime("%Y/%m/%d/%H/%M/%S") | |
image_file = f"generated_images/{current_time}/{random.randint(0, MAX_SEED)}.png" | |
buffer = BytesIO() | |
image.save(buffer, "PNG") | |
buffer.seek(0) | |
s3.upload_fileobj(buffer, bucket_name, image_file) | |
print("upload finish", image_file) | |
# start to generate thumbnail | |
thumbnail = image.copy() | |
thumbnail_width = 256 | |
aspect_ratio = image.height / image.width | |
thumbnail_height = int(thumbnail_width * aspect_ratio) | |
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS) | |
# Generate the thumbnail image filename | |
thumbnail_file = image_file.replace(".png", "_thumbnail.png") | |
# Save thumbnail to buffer and upload | |
thumbnail_buffer = BytesIO() | |
thumbnail.save(thumbnail_buffer, "PNG") | |
thumbnail_buffer.seek(0) | |
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file) | |
print("upload thumbnail finish", thumbnail_file) | |
return image_file | |
def generate_random_4_digit_string(): | |
return ''.join(random.choices(string.digits, k=4)) | |
def run_lora(prompt, image_url, lora_strings_json, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): | |
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height) | |
gr.Info("Starting process") | |
img2img_model = False | |
orginal_image = None | |
device = txt2img_pipe.device | |
print(device) | |
# Set random seed for reproducibility | |
if randomize_seed: | |
with calculateDuration("Set random seed"): | |
seed = random.randint(0, MAX_SEED) | |
# Load LoRA weights | |
gr.Info("Start to load LoRA ...") | |
with calculateDuration("Unloading LoRA"): | |
txt2img_pipe.to(device) | |
txt2img_pipe.unload_lora_weights() | |
print(device) | |
lora_configs = None | |
adapter_names = [] | |
lora_names = [] | |
if lora_strings_json: | |
try: | |
lora_configs = json.loads(lora_strings_json) | |
except: | |
gr.Warning("Parse lora config json failed") | |
print("parse lora config json failed") | |
if lora_configs: | |
with calculateDuration("Loading LoRA weights"): | |
adapter_weights = [] | |
for idx, lora_info in enumerate(lora_configs): | |
lora_repo = lora_info.get("repo") | |
weights = lora_info.get("weights") | |
adapter_name = lora_info.get("adapter_name") | |
lora_name = generate_random_4_digit_string() | |
lora_names.append(lora_name) | |
adapter_weight = lora_info.get("adapter_weight") | |
adapter_names.append(adapter_name) | |
adapter_weights.append(adapter_weight) | |
if lora_repo and weights and adapter_name: | |
try: | |
txt2img_pipe.to(device) | |
txt2img_pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=lora_name) | |
except: | |
print("load lora error") | |
# set lora weights | |
if len(lora_names) > 0: | |
txt2img_pipe.to(device) | |
txt2img_pipe.set_adapters(lora_names, adapter_weights=adapter_weights) | |
# Generate image | |
error_message = "" | |
try: | |
gr.Info("Start to generate images ...") | |
print(device) | |
# Generate image | |
pipe = txt2img_pipe.to(device) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
joint_attention_kwargs = {"scale": 1} | |
final_image = pipe( | |
prompt=prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
max_sequence_length=512, | |
generator=generator, | |
joint_attention_kwargs=joint_attention_kwargs | |
).images[0] | |
except Exception as e: | |
error_message = str(e) | |
gr.Error(error_message) | |
print("fatal error", e) | |
final_image = None | |
if final_image: | |
if upload_to_r2: | |
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket) | |
result = {"status": "success", "message": "upload image success", "url": url} | |
else: | |
result = {"status": "success", "message": "Image generated but not uploaded"} | |
else: | |
result = {"status": "failed", "message": error_message} | |
gr.Info("Completed!") | |
progress(100, "Completed!") | |
return final_image, seed, json.dumps(result) | |
# Gradio interface | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("flux-dev-multi-lora") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10) | |
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5) | |
image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) | |
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") | |
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") | |
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") | |
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False) | |
seed_output = gr.Text(label="Seed") | |
json_text = gr.Text(label="Result JSON") | |
gr.Markdown("**Disclaimer:**") | |
gr.Markdown( | |
"This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user." | |
) | |
inputs = [ | |
prompt, | |
image_url, | |
lora_strings_json, | |
image_strength, | |
cfg_scale, | |
steps, | |
randomize_seed, | |
seed, | |
width, | |
height, | |
upload_to_r2, | |
account_id, | |
access_key, | |
secret_key, | |
bucket | |
] | |
outputs = [result, seed_output, json_text] | |
run_button.click( | |
fn=run_lora, | |
inputs=inputs, | |
outputs=outputs | |
) | |
try: | |
demo.queue().launch() | |
except: | |
print("demo exception ...") |