import argparse import torch import os import json from tqdm import tqdm import shortuuid from transformers import AutoModelForCausalLM from transformers import AutoProcessor from llava.conversation import conv_templates, SeparatorStyle from torch.utils.data import Dataset, DataLoader from PIL import Image import math def eval_model(args): # Model model_kwargs = { "trust_remote_code": True, "attn_implementation": "flash_attention_2", "torch_dtype": "auto", } model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", device_map="cuda", **model_kwargs) image_processor = AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True) with open(args.question_file, "r") as file: questions = json.load(file) answers_file = os.path.expanduser(args.answers_file) os.makedirs(os.path.dirname(answers_file), exist_ok=True) ans_file = open(answers_file, "w") for line in tqdm(questions, total=len(questions)): question = line['conversations'][0] qs = question['value'].replace('', '').strip() if 'image' in line: messages = [ {"role": "user", "content": "<|image_1|>\n" + qs}, ] prompt = image_processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image = Image.open(os.path.join(args.image_folder, line['image'])).convert('RGB') inputs = image_processor(prompt, [image], return_tensors="pt").to("cuda:0") else: messages = [ {"role": "user", "content": qs}, ] prompt = image_processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = image_processor(prompt, None, return_tensors="pt").to("cuda:0") idx = line["id"] cur_prompt = qs generate_ids = model.generate( **inputs, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, eos_token_id=[32007], max_new_tokens=128 ) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = image_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ans_id = shortuuid.uuid() ans_file.write(json.dumps({"question_id": idx, "prompt": cur_prompt, "text": response, "answer_id": ans_id, "model_id": 'phi3', "metadata": {}}) + "\n") ans_file.close() if __name__ == "__main__": # mp.set_start_method("spawn", force=True) parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--image-folder", type=str, default="") parser.add_argument("--question-file", type=str, default="tables/question.jsonl") parser.add_argument("--answers-file", type=str, default="answer.jsonl") parser.add_argument("--conv-mode", type=str, default="phi3") parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--temperature", type=float, default=0.0) parser.add_argument("--top_p", type=float, default=None) parser.add_argument("--num_beams", type=int, default=1) parser.add_argument("--max_new_tokens", type=int, default=128) args = parser.parse_args() eval_model(args)