File size: 7,241 Bytes
99aee7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import torch
import torch.nn as nn
# from llava.utils import print
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
try:
from s2wrapper import forward as multiscale_forward
except:
pass
class CLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
if not delay_load:
print(f"Loading vision tower: {vision_tower}")
self.load_model()
elif getattr(args, "unfreeze_mm_vision_tower", False):
# TODO: better detector is needed.
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
self.load_model()
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts:
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
self.load_model()
else:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
def load_model(self, device_map=None):
if self.is_loaded:
print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
return
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
select_feature_type = self.select_feature
if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]:
select_every_k_layer = len(image_forward_outs.hidden_states) // 4
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in range(select_every_k_layer + self.select_layer, len(image_forward_outs.hidden_states), select_every_k_layer)], dim=-1)
select_feature_type = select_feature_type.replace("slicefour_", "")
elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]:
select_layers = [-2, -5, -8, -11, 6]
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in select_layers], dim=-1)
select_feature_type = select_feature_type.replace("slice_m25811_f6_", "")
else:
image_features = image_forward_outs.hidden_states[self.select_layer]
if select_feature_type == "patch":
image_features = image_features[:, 1:]
elif select_feature_type == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {select_feature_type}")
return image_features
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
_hidden_size = self.config.hidden_size
if "slicefour" in self.select_feature:
_hidden_size *= 4
if "slice_m25811_f6" in self.select_feature:
_hidden_size *= 5
return _hidden_size
@property
def num_patches_per_side(self):
return self.config.image_size // self.config.patch_size
@property
def num_patches(self):
_num_patches = (self.config.image_size // self.config.patch_size) ** 2
if "cls_patch" in self.select_feature:
_num_patches += 1
return _num_patches
@property
def image_size(self):
return self.config.image_size
class CLIPVisionTowerS2(CLIPVisionTower):
def __init__(self, vision_tower, args, delay_load=False):
self.s2_scales = getattr(args, "s2_scales", "336,672,1008")
self.s2_scales = list(map(int, self.s2_scales.split(",")))
self.s2_scales.sort()
self.s2_split_size = self.s2_scales[0]
self.s2_image_size = self.s2_scales[-1]
super().__init__(vision_tower, args, delay_load)
# change resize/crop size in preprocessing to the largest image size in s2_scale
if not delay_load or getattr(args, "unfreeze_mm_vision_tower", False):
self.image_processor.size["shortest_edge"] = self.s2_image_size
self.image_processor.crop_size["height"] = self.image_processor.crop_size["width"] = self.s2_image_size
def load_model(self, device_map=None):
if self.is_loaded:
print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
return
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
self.vision_tower.requires_grad_(False)
self.image_processor.size["shortest_edge"] = self.s2_image_size
self.image_processor.crop_size["height"] = self.image_processor.crop_size["width"] = self.s2_image_size
self.is_loaded = True
def forward_feature(self, images):
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size, split_forward=True)
image_features.append(image_feature)
else:
image_features = multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size, split_forward=True)
return image_features
@property
def hidden_size(self):
return self.config.hidden_size * len(self.s2_scales)
|