File size: 6,609 Bytes
99aee7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import torch
import torch.nn as nn
from transformers import CLIPImageProcessor
# from llava.utils import print
try:
import open_clip
import torchvision
from open_clip.transformer import _expand_token
except ImportError:
print("OpenCLIP not installed")
open_clip = None
HIDDEN_SIZE_DICT = {
"ViT-H-14-378-quickgelu": 1280,
}
class OpenCLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.model_name = vision_tower.replace("open_clip_hub:", "")
self.pretrained = args.vision_tower_pretrained
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
if not delay_load:
print(f"Loading vision tower: {vision_tower}")
self.load_model()
elif getattr(args, "unfreeze_mm_vision_tower", False):
# TODO: better detector is needed.
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
self.load_model()
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts:
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
self.load_model()
def load_model(self, device_map="auto"):
print(f"Loading OpenCLIP model: {self.model_name}")
print(f"Pretrained: {self.pretrained}")
vision_tower, _, image_processor = open_clip.create_model_and_transforms(model_name=self.model_name, pretrained=self.pretrained, precision="fp32", device="cuda")
resize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Resize)][0]
normalize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Normalize)][0]
self.resize_transform_size = resize_transform.size # 224 or 384
self.patch_size = vision_tower.visual.conv1.kernel_size[0] # 14 or 16
self.image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-large-patch14",
crop_size=resize_transform.size,
size={"shortest_edge": resize_transform.size},
image_mean=list(normalize_transform.mean),
image_std=list(normalize_transform.std),
)
print(f"Loaded image processor: {self.image_processor}")
self.vision_tower = vision_tower.visual
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs[self.select_layer]
if self.select_feature == "patch":
image_features = image_features[:, 1:]
elif self.select_feature == "cls_patch":
image_features = image_features
elif self.select_feature == "conv_flatten":
image_features = image_features.flatten(2).transpose(1, 2)
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def forward_visual(self, x, output_hidden_states=False):
if hasattr(self.vision_tower, "trunk") and hasattr(self.vision_tower.trunk, "_intermediate_layers"):
return self.vision_tower.trunk._intermediate_layers(x, abs(self.select_layer))
else:
def forward_openclip(self, x: torch.Tensor):
features = []
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
# class embeddings and positional embeddings
x = torch.cat(
[_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x],
dim=1,
)
# shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.patch_dropout(x)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
for r in self.transformer.resblocks:
x = r(x, attn_mask=None)
features.append(x)
return features
return forward_openclip(self.vision_tower, x)
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.forward_visual(image.to(self.dtype).unsqueeze(0), output_hidden_states=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.forward_visual(images.to(self.dtype), output_hidden_states=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
if hasattr(self.vision_tower, "conv1"):
return self.vision_tower.conv1.weight.dtype
if hasattr(self.vision_tower, "trunk"):
return self.vision_tower.trunk.patch_embed.proj.weight.dtype
raise NotImplementedError
@property
def device(self):
if hasattr(self.vision_tower, "conv1"):
return self.vision_tower.conv1.weight.device
if hasattr(self.vision_tower, "trunk"):
return self.vision_tower.trunk.patch_embed.proj.weight.device
raise NotImplementedError
@property
def config(self):
return None
@property
def hidden_size(self):
if self.model_name in HIDDEN_SIZE_DICT:
return HIDDEN_SIZE_DICT[self.model_name]
else:
raise NotImplementedError
@property
def num_patches(self):
image_size = self.resize_transform_size if isinstance(self.resize_transform_size, int) else self.resize_transform_size[0]
_num_patches = (image_size // self.patch_size) ** 2
if "cls_patch" in self.select_feature:
_num_patches += 1
return _num_patches
@property
def image_size(self):
return self.resize_transform_size
@property
def num_patches_per_side(self):
return self.resize_transform_size // self.patch_size
|