|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .multimodal_encoder.builder import build_vision_tower, build_gen_vision_tower |
|
from .multimodal_projector.builder import build_vision_projector, build_down_projector, build_gen_vision_projector |
|
|
|
from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_IDX, DEFAULT_IM_START_TOKEN_IDX, DEFAULT_IM_END_TOKEN_IDX |
|
|
|
|
|
class LlavaMetaModel: |
|
|
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
self.down_projector = build_down_projector(config) |
|
|
|
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): |
|
self.image_newline = nn.Parameter( |
|
torch.empty(config.hidden_size, dtype=self.dtype) |
|
) |
|
|
|
|
|
if hasattr(config, "gen_vision_tower"): |
|
self.gen_vision_tower = build_gen_vision_tower(config, delay_load=True) |
|
self.gen_projector = build_gen_vision_projector(config) |
|
|
|
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): |
|
self.image_newline = nn.Parameter( |
|
torch.empty(config.hidden_size, dtype=self.dtype) |
|
) |
|
|
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
|
|
def get_gen_vision_tower(self): |
|
gen_vision_tower = getattr(self, 'gen_vision_tower', None) |
|
if type(gen_vision_tower) is list: |
|
gen_vision_tower = gen_vision_tower[0] |
|
return gen_vision_tower |
|
|
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
gen_vision_tower = model_args.gen_vision_tower |
|
|
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
|
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
pretrain_gen_mlp_adapter = model_args.pretrain_gen_mlp_adapter |
|
|
|
mm_patch_merge_type = model_args.mm_patch_merge_type |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
self.config.gen_vision_tower = gen_vision_tower |
|
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "") |
|
|
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
|
|
if self.get_gen_vision_tower() is None: |
|
gen_vision_tower = build_gen_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.gen_vision_tower = [gen_vision_tower] |
|
else: |
|
self.gen_vision_tower = gen_vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
gen_vision_tower = self.gen_vision_tower[0] |
|
else: |
|
gen_vision_tower = self.gen_vision_tower |
|
gen_vision_tower.load_model() |
|
|
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.gen_projector_type = getattr(model_args, 'gen_projector_type', 'linear') |
|
|
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.gen_hidden_size = gen_vision_tower.hidden_size |
|
|
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
self.config.mm_patch_merge_type = mm_patch_merge_type |
|
self.config.n_query = model_args.n_query |
|
self.config.gen_pooling = model_args.gen_pooling |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
print("random initiation the mm_project !!!") |
|
self.mm_projector = build_vision_projector(self.config) |
|
|
|
if 'unpad' in mm_patch_merge_type: |
|
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) |
|
self.image_newline = nn.Parameter( |
|
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std |
|
) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
|
|
|
|
if getattr(self, 'gen_projector', None) is None: |
|
print("random initiation the gen_projector !!!") |
|
self.gen_projector = build_gen_vision_projector(self.config) |
|
|
|
if 'unpad' in mm_patch_merge_type: |
|
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) |
|
self.image_newline = nn.Parameter( |
|
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std |
|
) |
|
else: |
|
|
|
for p in self.gen_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
|
|
|
|
if getattr(self, 'down_projector', None) is None: |
|
print("random initiation the down_projector !!!") |
|
self.down_projector = build_down_projector(self.config) |
|
else: |
|
|
|
for p in self.down_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
|
|
if pretrain_gen_mlp_adapter is not None: |
|
gen_projector_weights = torch.load(pretrain_gen_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.gen_projector.load_state_dict(get_w(gen_projector_weights, 'mm_projector')) |
|
|
|
|
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. |
|
original_size (tuple): The original size of PIL image (width, height). |
|
|
|
Returns: |
|
torch.Tensor: The unpadded image tensor. |
|
""" |
|
original_width, original_height = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding:current_height - padding, :] |
|
else: |
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding:current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def get_gen_vision_tower(self): |
|
return self.get_model().get_gen_vision_tower() |
|
|
|
def encode_images(self, images): |
|
device = self.get_vision_tower().device |
|
images = images.to(device) |
|
image_features = self.get_model().get_vision_tower()(images) |
|
num_img, _, c = image_features.shape |
|
|
|
gen_pooling = self.get_gen_pooling() |
|
n_query = self.get_n_query() if not 'early' in gen_pooling else 729 |
|
if 'pool2d' in gen_pooling: |
|
stride = int(gen_pooling.split('_')[-1]) |
|
sqrt_n = int(n_query**0.5) |
|
image_features = image_features.permute(0, 2, 1).view(num_img, -1, sqrt_n, sqrt_n) |
|
image_features = F.avg_pool2d(image_features, kernel_size=(stride, stride), stride=stride) |
|
image_features = image_features.reshape(num_img, c, -1).permute(0,2,1) |
|
|
|
|
|
return image_features |
|
|
|
def get_mm_projector(self): |
|
return self.get_model().mm_projector |
|
|
|
def get_gen_projector(self): |
|
return self.get_model().gen_projector |
|
|
|
|
|
def get_n_query(self): |
|
return self.get_model().config.n_query |
|
|
|
def get_gen_pooling(self): |
|
return self.get_model().config.gen_pooling |
|
|
|
def pool_img(self, image_features): |
|
num_img, n, c = image_features.shape |
|
gen_pooling = self.get_gen_pooling() |
|
|
|
stride = int(gen_pooling.split('_')[-1]) |
|
sqrt_n = int(n**0.5) |
|
image_features = image_features.permute(0, 2, 1).view(num_img, c, sqrt_n, sqrt_n) |
|
image_features = F.avg_pool2d(image_features, kernel_size=(stride, stride), stride=stride) |
|
image_features = image_features.view(num_img, c, -1).permute(0,2,1).contiguous() |
|
return image_features |
|
|
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
gen_images, und_images, image_sizes=None |
|
): |
|
vision_tower = self.get_vision_tower() |
|
mm_projector = self.get_mm_projector() |
|
|
|
|
|
gen_vision_tower = self.get_gen_vision_tower() |
|
gen_projector = self.get_gen_projector() |
|
|
|
|
|
if (gen_images is None and und_images is None) or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels, None, None, None |
|
|
|
if not gen_images is None: |
|
|
|
prompt_image_embeds = gen_vision_tower(gen_images) |
|
|
|
if 'early' in self.get_gen_pooling(): |
|
prompt_image_embeds = self.pool_img(prompt_image_embeds) |
|
num_img, _, c = prompt_image_embeds.shape |
|
|
|
prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c) |
|
target_image_embeds = torch.clone(prompt_image_embeds).detach() |
|
prompt_image_embeds = gen_projector(prompt_image_embeds) |
|
else: |
|
|
|
target_image_embeds = None |
|
|
|
|
|
|
|
|
|
num_img = und_images.shape[0] |
|
dummy = torch.zeros(num_img, 3, 448, 448 , dtype=und_images.dtype, device=und_images.device) |
|
temp = gen_vision_tower(dummy)[:,:729,:] |
|
num_img, _, c = temp.shape |
|
temp = temp.contiguous().view(-1, c) |
|
temp = gen_projector(temp) * 1e-9 |
|
|
|
|
|
if not und_images is None: |
|
|
|
und_image_embeds = vision_tower(und_images) |
|
num_img, _, c = und_image_embeds.shape |
|
und_image_embeds = und_image_embeds.contiguous().view(-1, c) |
|
und_image_embeds = mm_projector(und_image_embeds) |
|
if gen_images is None: |
|
und_image_embeds += temp |
|
else: |
|
|
|
num_img = gen_images.shape[0] |
|
dummy = torch.zeros(num_img, 3, 384, 384 , dtype=gen_images.dtype, device=gen_images.device) |
|
temp = vision_tower(dummy) |
|
if 'early' in self.get_gen_pooling(): |
|
temp = temp[:,:64,:] |
|
num_img, _, c = temp.shape |
|
temp = temp.contiguous().view(-1, c) |
|
temp = mm_projector(temp) * 1e-9 |
|
|
|
prompt_image_embeds += temp |
|
|
|
image_idx = (input_ids == IMAGE_TOKEN_IDX) |
|
img_indicator = torch.clone(image_idx) |
|
output_indicator = labels != -100 |
|
|
|
input_indicator = labels == -100 |
|
|
|
|
|
|
|
img_loss_indicator = torch.logical_and(output_indicator, img_indicator) |
|
img_loss_indicator = torch.cat( |
|
[img_loss_indicator[:, 1:], img_loss_indicator[:, :1]], dim=1) |
|
|
|
img_indicator = torch.cat( |
|
[img_indicator[:, 1:], img_indicator[:, :1]], dim=1) |
|
|
|
|
|
|
|
|
|
|
|
if not target_image_embeds is None: |
|
target_image_embeds = target_image_embeds[-img_loss_indicator.sum():,:] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text_embeds = self.get_model().embed_tokens(input_ids) |
|
|
|
|
|
N_QUERY = self.get_n_query() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gen_img_idx = torch.logical_and(output_indicator, image_idx) |
|
if not target_image_embeds is None: |
|
text_embeds[gen_img_idx] = prompt_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:] |
|
target_image_embeds = target_image_embeds.to(text_embeds.device)[:gen_img_idx.sum(),:] |
|
|
|
und_img_idx = torch.logical_and(input_indicator, image_idx) |
|
if not und_images is None: |
|
|
|
|
|
text_embeds[und_img_idx] = und_image_embeds.to(text_embeds.device)[:und_img_idx.sum(), :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
labels[image_idx] = -100 |
|
|
|
|
|
|
|
|
|
return None, position_ids, attention_mask, past_key_values, text_embeds, labels, img_loss_indicator, img_indicator, target_image_embeds |
|
|
|
def prepare_inputs_labels_for_understanding( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
batch_images, image_sizes=None |
|
): |
|
vision_tower = self.get_vision_tower() |
|
mm_projector = self.get_mm_projector() |
|
|
|
prompt_image_embeds = vision_tower(batch_images) |
|
|
|
num_img, _, c = prompt_image_embeds.shape |
|
all_image_embeds = torch.clone(prompt_image_embeds).detach() |
|
prompt_image_embeds = prompt_image_embeds.contiguous().view(-1, c) |
|
prompt_image_embeds = mm_projector(prompt_image_embeds) |
|
|
|
|
|
|
|
|
|
|
|
image_idx = (input_ids == IMAGE_TOKEN_IDX) |
|
|
|
img_indicator = torch.clone(image_idx) |
|
img_indicator = torch.cat( |
|
[img_indicator[:, 1:], img_indicator[:, :1]], dim=1) |
|
|
|
|
|
|
|
|
|
|
|
text_embeds = self.get_model().embed_tokens(input_ids) |
|
|
|
|
|
N_QUERY = self.get_n_query() |
|
|
|
|
|
|
|
|
|
|
|
text_embeds[image_idx] = prompt_image_embeds.to(text_embeds.device)[:image_idx.sum(),:] |
|
|
|
|
|
return None, position_ids, attention_mask, past_key_values, text_embeds, img_indicator, labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|